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1. Motivation

Fourier analysis is a key tool in signal processing. Representing time series in the
frequency domain is instrumental in applications like compression.

We explore the synergies between Fourier analysis and diffusion models. We
compare models trained with time and frequency time series representations.

We find that representing time series in the frequency domain tends to be
preferable. We explain this phenomenon by noting that many datasets are
localized in the frequency domain.
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2. Background Knowledge

Diffusion models. In the SDE formulation, diffusion is a stochastic process that
gradually noises samples from the distribution of interest throught € [0, T

dx = f(x,t)dt + g(t)dw

In the limit ¢ — T, samples are well-described by an isotropic Gaussian. These
can be transported back to the initial distribution through the reverse process:

dx = b(x,t)dt + g(t)dw

where the inversion is performed with the score s(x, t) := V, log p;(x) through
b(x,t) = f(x,t) — g*(t) s(x,t). This score is learned by a model by minimizing

LSM(SHJ St|0' X, t) = Hse(x» t) o St|0(x1 t)”

Fourier analysis. If we consider a time series x = (xg, ..., Xxy—1) € R¥M the
discrete Fourier transform (DFT) is defined as
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This transform is invertible, as the original time series can be reconstructed as
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3. Time and Frequency Duality

What does a diffusion process performed in the time domain look like in the
frequency domain? We prove that this is still a diffusion process with an
important nuance: Brownian motions are replaced by mirrored Brownian
motions, which have redundant components.
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dx = f(X, t)dt + g(t)dv
dx¥ = b(% t)dt + g(t)dv'

dx = f(x,t)dt + g(t)dw

dx = b(x,t)dt + g(t)dw
f(xt) = FIf(F1[x], )]
b(X t) = f(% t) — g>()A*5(X, t)

Hence, performing a diffusion process in either domain implies a dual diffusion
process domain in the other domain.

How about the score-matching objective? Again, we show that we can associate
to any score learned in either domain an auxiliary score in the other domain.
Those two scores share the same score matching objective:

so(x,t) = F 7 3(F[x], 0] $o(%, 1)

LSM(SHJ St|01 X, t) - LSM(§91 §t|01 ’f, t)

Time and frequency diffusion appear similar. However, we observe consistently
lower sliced Wasserstein distances with the true distribution for samples of the
frequency models. What is happening?
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0.000 0.020 = 0.000
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Dataset Metric Domain |

ECG Frequency 0.012
Time 0.015
Frequency 0.144 + 0.004 0.206 £ 0.006
Time 0.152 + 0.004 0.211 + 0.006
Frequency 45.812 + 2.096 64.056 + 3.040
Time 43.602 + 2.044 60.512 + 2.960
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4. The Uncertainty Principle Strikes Back

The uncertainty principle stipulates that a time series cannot be localized in the
time and the frequency domain simultaneously. The localization in either
domain can be quantified through the delocalization metrics

1
Atime (X) == min > Z Aoy (T, )2, &
e lxll? £

1
Afreq(x) = MIN 7—r- dcyc(K K’)”x;c’llz
"R L,

Measuring these on various time series reveals that time series are substantially
more localized (i.e., less delocalized) in the frequency domain.
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This suggests that a partial explanations for the superiority of the frequency
diffusion models is the localization of time series in the frequency domain.

To verify this explanation, we synthetically delocalize time series in the
frequency domain with spectral Gaussian convolutions. This intervention leads
time diffusion model to outperform. This (partially) confirms the explanation.
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5. More Information
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