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Time Series Diffusion in the Frequency Domain

1. Motivation

Fourier analysis is a key tool in signal processing. Representing time series in the 
frequency domain is instrumental in applications like compression.

We explore the synergies between Fourier analysis and diffusion models. We 
compare models trained with time and frequency time series representations.

We find that representing time series in the frequency domain tends to be 
preferable. We explain this phenomenon by noting that many datasets are 
localized in the frequency domain.

5. More Information
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2. Background Knowledge

Diffusion models. In the SDE formulation, diffusion is a stochastic process that 
gradually noises samples from the distribution of interest through 𝑡 ∈ [0, 𝑇]
       
         𝒅𝒙 = 𝒇 𝒙, 𝑡 𝒅𝒕 + 𝑔 𝑡 𝒅𝒘

In the limit 𝑡 → 𝑇, samples are well-described by an isotropic Gaussian. These 
can be transported back to the initial distribution through the reverse process:

         𝒅𝒙 = 𝒃 𝒙, 𝑡 𝒅𝒕 + 𝑔 𝑡 𝒅2𝒘

where the inversion is performed with the score 𝒔 𝒙, 𝑡 ≔ 𝛁𝒙 log 𝑝" 𝒙  through 
𝒃 𝒙, 𝑡 = 𝒇 𝒙, 𝑡 − 𝑔# 𝑡 	𝒔(𝒙, 𝑡). This score is learned by a model by minimizing
       
      ℒ𝑺𝑴 𝒔𝜽, 𝒔𝒕|𝟎, 𝒙, 𝑡 ≔ 𝒔𝜽 𝒙, 𝑡 − 𝒔𝒕|𝟎 𝒙, 𝑡

Fourier analysis. If we consider a time series 𝒙 = 𝒙𝟎, … , 𝒙𝑵+𝟏 ∈ ℝ-⋅/, the 
discrete Fourier transform (DFT) is defined as
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This transform is invertible, as the original time series can be reconstructed as
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3. Time and Frequency Duality

What does a diffusion process performed in the time domain look like in the 
frequency domain? We prove that this is still a diffusion process with an 
important nuance: Brownian motions are replaced by mirrored Brownian 
motions, which have redundant components.

Hence, performing a diffusion process in either domain implies a dual diffusion 
process domain in the other domain.

How about the score-matching objective?  Again, we show that we can associate 
to any score learned in either domain an auxiliary score in the other domain. 
Those two scores share the same score matching objective: 
      
        

Time and frequency diffusion appear similar. However, we observe consistently 
lower sliced Wasserstein distances with the true distribution for samples of the 
frequency models. What is happening?

4. The Uncertainty Principle Strikes Back
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𝒅𝒙 = 𝒇 𝒙, 𝒕 𝒅𝒕 + 𝒈 𝒕 𝒅𝒘 𝒅G𝒙 = I𝒇 G𝒙, 𝒕 𝒅𝒕 + 𝒈 𝒕 𝒅G𝒗

𝒅𝒙 = 𝒃 𝒙, 𝒕 𝒅𝒕 + 𝒈 𝒕 𝒅2𝒘 𝒅G𝒙 = K𝒃 G𝒙, 𝒕 𝒅𝒕 + 𝒈 𝒕 𝒅K𝒗′

𝒙(𝑡)
G𝒙(𝑡)

I𝒇 G𝒙, 𝑡 = ℱ[𝑓(ℱ+𝟏[G𝒙], 𝑡)]
K𝒃 G𝒙, 𝑡 = I𝒇 G𝒙, 𝑡 − 𝑔# 𝑡 Λ#O𝒔 G𝒙, 𝑡

𝒔𝜽7 (𝒙, 𝑡) = ℱ+𝟏[	 O𝒔𝜽 ℱ 𝒙 , 𝑡 ]	 O𝒔𝜽 G𝒙, 𝑡 	

ℒ𝑺𝑴 𝒔𝜽, 𝒔𝒕|𝟎, 𝒙, 𝑡 = ℒ𝑺𝑴 O𝒔𝜽, O𝒔𝒕|𝟎, G𝒙, 𝑡

The uncertainty principle stipulates that a time series cannot be localized in the 
time and the frequency domain simultaneously. The localization in either 
domain can be quantified through the delocalization metrics
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Measuring these on various time series reveals that time series are substantially 
more localized (i.e., less delocalized) in the frequency domain.

This suggests that a partial explanations for the superiority of the frequency 
diffusion models is the localization of time series in the frequency domain.

To verify this explanation, we synthetically delocalize time series in the 
frequency domain with spectral Gaussian convolutions. This intervention leads 
time diffusion model to outperform. This (partially) confirms the explanation. 


