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• We shows that the conditional 
common entropy 𝐶𝐶𝐸 𝑍; 𝑌 𝑋  
can be computed exactly for 
binary variables 𝑍, 𝑌. 

• For variables with higher 
number of states, finding exact 
common entropy is NP-hard. 

• We propose the IV latent 
search algorithm to 
approximate graph-specific 
conditional common entropy for 
higher number of states.

Check out our paper 
and code here

The instrumental variables are 
in general non-testable, 
instrumental inequality can be 
used to reject invalid 
instruments. Can we leverage 
the side information of latent 
confounder to further verify the 
IVs?

 How can we get tighter 
bounds of causal effect given 
the side-information about 
latent confounder?

Drug 
Assignment Compliance 

Unobserved 
factors

?

Single World Intervention Graph (SWIG)
a graphical representation that establishes a connection between the 
observational and interventional distributions with the DAG.

Instrumental Variable
a graphical representation that establishes a connection between the 
observational and interventional distributions.
Marginal stochastic exclusion: 

𝐸 𝑌!,# = 𝐸 𝑌!!,# 	∀𝑧, 𝑧$, 𝑥

Marginal Exchangeability: 
	Z	⫫	Y%,&	∀𝑧, 𝑥

Instrumental Inequality
A necessary condition for discrete variables 𝑋, 𝑌, 𝑍 generated from an IV graph
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𝑃 𝑥, 𝑦 𝑧 ≤ 1

𝐶𝐶𝐸 𝑍; 𝑌|𝑋 ≔ min
( #,',!,)

𝐻 𝑊

             𝑠. 𝑡. 	𝐼 𝑍; 𝑌 𝑋,𝑊 = 0

             𝑞 𝑥, 𝑦, 𝑧, 𝑤 	𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒	𝑤𝑖𝑡ℎ	𝑜𝑏𝑠. 

Conditional Common Entropy
Generalize the idea of common entropy to more complex graphs. 

Graph-specific Conditional Common Entropy
In addition to the independence constraints for CCE, we want to find a variable 
that attains the minimum entropy while compatible with the graph.

Definition: 
Let 𝐶𝐶𝐸*→*! 𝑍; 𝑌|𝑋  defined as the minimum entropy of the variable 𝑊, if we 
replace an edge 𝑣 → 𝑣$ with 𝑣 → 𝑊 → 𝑣$ and (𝑍	⫫	Y|	X,	W) in 𝐺$. 
Similarly define 𝐶𝐶𝐸*↔*! 𝑍; 𝑌|𝑋  for the double arrow edge 𝑣 ↔ 𝑣$.

𝐻 𝑊 = 	𝐶𝐶𝐸!→' 𝑍; 𝑌|𝑋, 𝑈

(𝑊⫫U);	 (W⫫X|Z);	 (Z⫫Y|X,W,U)

𝐻 𝑊 = 	𝐶𝐶𝐸#↔' 𝑍; 𝑌|𝑋

(𝑊⫫Z);	 (𝑍⫫Y|X,W)

           IV Graph                    Direct Graph

Theorem Given variables 𝑋, 𝑌, 𝑍 in a causal graph 𝒢 with distribution 𝑃(𝑋, 𝑌, 𝑍), and 
latent confounder 𝑈. If we have 𝑍⫫Y|X,U, then the following inequality holds

𝐶𝐶𝐸 𝑍; 𝑌 𝑋 ≤ 𝐶𝐶𝐸*↔*! 𝑍; 𝑌 𝑋 ≤ 𝐻(𝑈)

Relaxed loss function:
ℒ = 𝐼 𝑍; 𝑌 𝑋,𝑊 + 𝛽!𝐻 𝑊 + 𝛽"𝐼 𝑊; 𝑍

Weak Confoundedness Assumption: Consider a causal model with a set of 
endogenous variables 𝒱 and exogenous variables 𝒰. For any latent confounder 𝑈
∈ 𝒰, we have 𝐻(𝑈) 	≤ 	𝜃.

Falsify Invalid IVs
Lemma Under the weak confoundedness assumption, a covariate Z is a valid 
instrumental variable only if

𝐶𝐶𝐸,- 𝑍; 𝑌 𝑋 ≤ 	𝜃.

Theorem Under Assumption 2.1, for variables 𝑋, 𝑌, 𝑍 with |𝑋| 	= 	𝑛, |𝑌	| 	= 	𝑚, and 
|𝑍| 	= 	𝑙 and the compatible joint distribution 𝑃(𝑋, 𝑌, 𝑍). Assuming 
𝐶𝐶𝐸,-	(𝑍; 	𝑌	|𝑋, 𝑈) 	= 	𝜙. The causal effect of 𝑥. on 𝑦/ is bounded by 

𝐿𝐵	 ≤ 	𝑃 𝑦/ 𝑑𝑜 𝑥. ≤ 	𝑈𝐵,
where

𝐿𝐵/𝑈𝐵 = 𝑚𝑖𝑛/max 3
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If the Marginal exchangeability assumption holds, replace the last inequality 
constraint with 
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Select IV from Covariates
• When the weak confoundedness assumption is not hold, conditional common 

entropy may also provide useful information for selecting IVs.
• We experimentally show that the valid IV is more likely to have smaller 

conditional common entropy, since it is “easier” to make it conditional 
independent with the outcome.

Common Entropy
Common entropy between a pair of random variables (𝑋, 𝑌) is defined as the 
minimum entropy of a variable that make them conditionally independent.

𝐶𝐸 𝑋; 𝑌 ≔ min
( #,',)

𝐻 𝑊

             𝑠. 𝑡. 	𝐼 𝑋; 𝑌 𝑊 = 0

             𝑞 𝑥, 𝑦, 𝑤 	𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒	𝑤𝑖𝑡ℎ	𝑜𝑏𝑠.

Algorithm IV LatentSearch
 Input: Joint distribution 𝑃(𝑋, 𝑌, 𝑍); Iterations number 
𝑁; Initialization 𝑞" 𝑊 𝑋,𝑌, 𝑍 ; 𝛽#, 𝛽" ≥ 0.

 for 𝑖 ← 1	𝑡𝑜	𝑁 do
  Form the joint: 

𝑞$(𝑋, 𝑌, 𝑍,𝑊) ← 𝑞$ 𝑊 𝑋,𝑌, 𝑍 𝑃(𝑋, 𝑌, 𝑍)
  Get posteriors:
  𝑞$(𝑊) ← ∑%,',( 𝑞$ 𝑋, 𝑌, 𝑍,𝑊
  𝑞$(𝑊|𝑋) ←

∑!,# *$(,,-,.,/)
∑!,#,% *$(,,-,.,/)

  𝑞$ 𝑊 𝑋, 𝑍 ←
∑! *$ ,,-,.,/
∑!,% *$ ,,-,.,/

  𝑞$(𝑊|𝑋, 𝑌) ← ∑# *$(,,-,.,/)
∑#,% *$(,,-,.,/)

  Update:
  𝑞$1" 𝑋, 𝑌, 𝑍,𝑊 ← *$ /|,,. *$ /|,,- *$ 3 &'(&)	

5 ,,-,. *$ /|, * /|. &)

  where 𝑓 𝑋, 𝑌, 𝑍 = ∑6
*$ /|,,. *$ /|,,- *$ 3 &'(&)

*$ 𝑊 𝑋 *$ 𝑊 𝑍 &)

 end for
 Return: 𝑞7 𝑊 𝑋,𝑌, 𝑍 𝑃 𝑋, 𝑌, 𝑍


