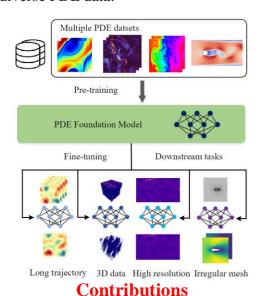




## DPOT: Auto-Regressive Denoising Operator Transformer for Large-Scale PDE Pre-Training



Zhongkai Hao, advisor: Hang Su, Jun Zhu, Anima Anandkumar


Dept. of Computer Science, Tsinghua University; Contact: hzj21@mails.tsinghua.edu.cn

#### Introduction

Learning operators of PDEs is an essential problem with applications in numerous domains of science and engineering. However, collecting PDE data using simulation or experiments are costly (thousands of paired data or trajectories).

Can we use pre-training to build a foundational PDE model for downstream tasks?

Yes! we propose **DPOT**, an auto-regressive Denoising Pre-training Operator Transformer for diverse PDE data.



The first unified transformer model up to **1B** pre-trained on 10+ different PDE datasets.

#### Methodology

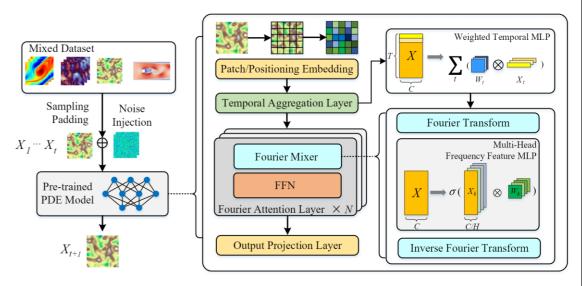
Objective for pre-training: predicting next step using noisy data for robust rollouts

$$\min_{w} \mathcal{L} = \mathbb{E}_{oldsymbol{u} \sim p(\mathcal{D})} \sum_{1 \leqslant t \leqslant T} \|\mathcal{G}_w(oldsymbol{u}^{< t} + oldsymbol{arepsilon}) - oldsymbol{u}^t\|_2^2$$

Learning the integral transform of PDE solution map using Fourier Mixer

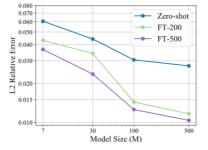
$$(\mathcal{K}_{\phi}z^l)(x) = \int_{\Omega} \kappa(x, y; \phi) z^l(y) dy$$

Approximate it in frequency space using FFT/IFFT + MLP


$$z^{l+1}(x) = \mathcal{F}^{-1}[W_2 \cdot \sigma(W_1 \cdot \mathcal{F}[z^l] + b_1) + b_2](x)$$

Temporal aggregation to extract temporal features

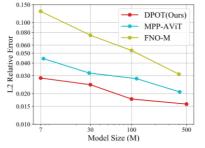
$$\boldsymbol{z}_{\text{agg}} = \sum_{t} W_{t} \cdot \boldsymbol{z}_{p}^{t} e^{-i\boldsymbol{\gamma}t}$$


Balanced data sampling by choosing dataset with equal probability

### **Illustration of DPOT**



#### Scaling Law Results of Neural PDE Solver


509M



# Model Parameters Attention dim MLP dim Layers Heads Model si 512 512 4 4 7M 1024 1024 6 8 30M 1024 4096 12 8 122M

Medium Large

1536



#### **Downstream Tasks**

| L2RE/L1-Medium* | Turbulence | 3D dataset | Steady* |
|-----------------|------------|------------|---------|
| Dataset         | PDB-turb   | PDB        | CNO     |
| (Geo-)FNO       | 0.193      | 0.410      | 0.0357  |
| MPP-FT          | 0.152      | -          | -       |
| DPOT-Vanilla    | 0.167      | 0.262      | 0.0331  |
| DPOT-FT         | 0.135      | 0.226      | 0.0230  |

#### **Main Results**

| L2RE    | Params |        | FNO-ν  |         | PDEBench CNS- $(\eta, \zeta)$ ,DR,SWE |        |        |         |          |         |         | PDEArena |        | CFDBench |         |
|---------|--------|--------|--------|---------|---------------------------------------|--------|--------|---------|----------|---------|---------|----------|--------|----------|---------|
| Subset  | _      | 1e-5   | 1e-4   | 1e-3    | 1,0.1                                 | 1,0.01 | M1     | 0.1,0.1 | 0.1,0.01 | M0.1    | DR      | SWE      | NS     | NS-cond  | -       |
| Small   | Model  |        |        |         |                                       |        |        |         |          |         |         |          |        |          |         |
| FNO     | 0.5M   | 0.156  | 0.0834 | 0.0128  | 0.098                                 | 0.096  | 0.097  | 0.360   | 0.170    | 0.265   | 0.12    | 0.0044   | 0.0912 | 0.319    | 0.00761 |
| UNet    | 25M    | 0.198  | 0.119  | 0.0245  | 0.334                                 | 0.291  | 0.313  | 0.569   | 0.357    | 0.463   | 0.0971  | 0.0521   | 0.102  | 0.337    | 0.209   |
| FFNO    | 1.3M   | 0.121  | 0.0503 | 0.0099  | 0.0212                                | 0.052  | 0.0366 | 0.162   | 0.0452   | 0.104   | 0.0571  | 0.0116   | 0.0839 | 0.602    | 0.00714 |
| GK-T    | 1.6M   | 0.134  | 0.0792 | 0.0098  | 0.0341                                | 0.0377 | 0.0359 | 0.0274  | 0.0366   | 0.0320  | 0.0359  | 0.00692  | 0.0952 | 0.423    | 0.0105  |
| GNOT    | 1.8M   | 0.157  | 0.0443 | 0.0125  | 0.0325                                | 0.0420 | 0.0373 | 0.0228  | 0.0341   | 0.0285  | 0.0311  | 0.00678  | 0.172  | 0.325    | 0.00877 |
| Oformer | 1.9M   | 0.1705 | 0.0645 | 0.0104  | 0.0417                                | 0.0625 | 0.0521 | 0.0254  | 0.0205   | 0.0229  | 0.0192  | 0.00717  | 0.135  | 0.332    | 0.0102  |
| FNO-m   | 7M     | 0.116  | 0.0922 | 0.0156  | 0.151                                 | 0.108  | 0.130  | 0.230   | 0.076    | 0.153   | 0.0321  | 0.00912  | 0.210  | 0.384    | 0.0274  |
| MPP-Ti  | 7M     | -      | -      | -       | -                                     | -      | 0.0442 | -       | -        | 0.0312  | 0.0168  | 0.0066   | -      | -        | -       |
| MPP-S   | 30M    | -      | -      | -       | -                                     | -      | 0.0319 | _       | -        | 0.0213  | 0.0112  | 0.0024   | -      | -        | -       |
| Ours-Ti | 7M     | 0.0976 | 0.0606 | 0.00954 | 0.0173                                | 0.0397 | 0.0285 | 0.0132  | 0.0220   | 0.0176  | 0.0321  | 0.00560  | 0.125  | 0.384    | 0.00952 |
| Ours-S  | 30M    | 0.0553 | 0.0442 | 0.0131  | 0.0153                                | 0.0337 | 0.0245 | 0.0119  | 0.0187   | 0.0153  | 0.0379  | 0.00657  | 0.0991 | 0.316    | 0.00696 |
| Pre-tr  |        |        |        |         |                                       |        |        |         |          |         |         |          |        |          |         |
| MPP-L   | 400M   | -      | -      | -       | -                                     | -      | 0.0208 | -       | -        | 0.0147  | 0.0098  | 0.00220  | -      | -        | -       |
| Ours-S  | 30M    | 0.0553 | 0.0442 | 0.0131  | 0.0153                                | 0.0337 | 0.0245 | 0.0118  | 0.0188   | 0.0153  | 0.0379  | 0.00657  | 0.0999 | 0.316    | 0.00696 |
| Ours-M  | 122M   | 0.0409 | 0.0285 | 0.00474 | 0.0116                                | 0.0238 | 0.0177 | 0.00866 | 0.0129   | 0.0108  | 0.0292  | 0.00290  | 0.0812 | 0.276    | 0.00752 |
| Ours-L  | 500M   | 0.0550 | 0.0274 | 0.00528 | 0.0100                                | 0.0216 | 0.0158 | 0.00872 | 0.0115   | 0.0101  | 0.0232  | 0.00233  | 0.0798 | 0.240    | 0.00650 |
| Ours-H  | 1.03B  | 0.0174 | 0.0131 | 0.00229 | 0.00961                               | 0.0180 | 0.0138 | 0.00847 | 0.0105   | 0.00948 | 0.0191  | 0.00199  | 0.0379 | 0.213    | 0.00749 |
| DPO     | T-FT   |        |        |         |                                       |        |        |         |          |         |         |          |        |          |         |
| T-200   | 7M     | 0.0511 | 0.0431 | 0.00729 | 0.0136                                | 0.0238 | 0.0187 | 0.0168  | 0.0145   | 0.0157  | 0.0194  | 0.00280  | 0.103  | 0.313    | 0.00537 |
| S-200   | 30M    | 0.0449 | 0.0342 | 0.00680 | 0.0152                                | 0.0211 | 0.0182 | 0.0150  | 0.0151   | 0.0151  | 0.0171  | 0.00224  | 0.0892 | 0.290    | 0.00442 |
| M-200   | 100M   | 0.0255 | 0.0144 | 0.00427 | 0.0123                                | 0.0179 | 0.0151 | 0.0182  | 0.0117   | 0.0149  | 0.0142  | 0.00218  | 0.0329 | 0.191    | 0.00452 |
| L-200   | 500M   | 0.0235 | 0.0117 | 0.00383 | 0.0114                                | 0.0153 | 0.0133 | 0.0171  | 0.0108   | 0.0140  | 0.0158  | 0.00197  | 0.0307 | 0.182    | 0.00480 |
| T-500   | 7M     | 0.0520 | 0.0367 | 0.00580 | 0.0112                                | 0.0195 | 0.0153 | 0.0174  | 0.0138   | 0.0156  | 0.0148  | 0.00241  | 0.0910 | 0.280    | 0.00391 |
| S-500   | 30M    | 0.0322 | 0.0237 | 0.00437 | 0.0129                                | 0.0167 | 0.0148 | 0.0152  | 0.0126   | 0.0139  | 0.0129  | 0.00235  | 0.0867 | 0.268    | 0.00382 |
| M-500   | 100M   | 0.0229 | 0.0126 | 0.00335 | 0.00998                               | 0.0146 | 0.0123 | 0.0161  | 0.00947  | 0.0128  | 0.0103  | 0.00227  | 0.0294 | 0.172    | 0.00373 |
| L-500   | 500M   | 0.0213 | 0.0104 | 0.00323 | 0.0108                                | 0.0131 | 0.0119 | 0.0160  | 0.00905  | 0.0125  | 0.00739 | 0.00170  | 0.0278 | 0.170    | 0.00322 |