Enforcing Constraints in RNA Secondary Structure Predictions: ;-
A Post-Processing Framework Based on the Assignment Problem
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RNA Secondary Structure Prior Works & Challenge Results

c—a GGAACGUUCLC E2Efold proposes a two-stage approach: Two real benchmark datasets: RNAStrAlign & ncRNA
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~en G C clooooooooo ol ' wherepost-processing for the constraints is presented as an optimization:
RNA strand Secondary structure N Blonary matrlx max (Y B s,Y)
(i, 7)-th entry is 1 iff the pairs are bonded. v
. Do RNA structures matter? If yes, why? ~ ~ ~ ~
® yes, why st. Y, €{0,1}, Y=Y7, Y1<1,

A. Yes, as structure is the main determinant of the function of RNAs.

Yii=0 ifzz; ¢ Bor i —j| <4

- Knowing RNA structure is crucial for advances in biotechnology.
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Considering the natural constraints governed by physical laws: 71 -1 771 -1 & E2Efold backbone + E2E PP REDtold backbone + RED PP
- o Prediction performance __Runtime _
(C1) Binary & symmetric . (C2) | (C3) | (C4) | F1_ | Recall |Precision | Time(s)
o - Theorem 1 (Equivalence) RNAfold i i : 0.606  0.679  0.566 .
Yi; €{0,1} for Vi,j and ¥ =Y, Any optimal solution of each optimization can be reduced to an optimal RNAstructure - - - 0.599 0.668 0.562 -
(C2) Watson-Crick & Wobble base pairs only  Watson-Crick Wobble solution of the other problem. CONTRAfold 0% 8.17% 0% 0626 0690 0596 ]
¢ B base pairs base pairs SPOT-RNA 57.7% 30.3% 0% 0.647/ 0.683 0.640 -
Y,i=0 1t x;x; .= 1AU, UA, GC, CG, GU, UG . : : _ _ _ _
v i ¢ 1AU, U4, GC, CG, GU, UG} - Employ off-the-shelf algorithms such as Hungarian algorithm / MXfold2 0631 0687 0.608
: . E2Efold + E2E PP 0% 12.8% 58.3% 0.595 0.575 0.631 0.049
(C3) No sharp loops o c—c c—c Zonker-Volgenant algorithm s.t. we obtain: oE T ) i i
Yi; =0 if i —j| < 4 VAN I E2Efold + Blossom  73.0% 21.0% 0.3% 0.489 0.615 0.415 2.212
. Svamy I 1. Model-agnostic add-on to any backbone ML model E2Efold + Ours 0% 0% 0% 0.608 0.602 0.622 0.308
cu e e A | | . . 9
(C4) No overlap of pairs Z V. < 1V S e 2. Outputs completely adhering to the fundamental constraints of RNAs REDfold + RED PP 0% 0.5% 0% 0844 08495 0877 0053
iy = < Ne o N o N o REDfold + Blossom  9.4% 0.3% 0% 0.840 0.873 0.838 0.378
j=1 OK Not OK 3. Improved predictive performance & empirical running time REDfold + Ours 0% 0% 0% 0.847 0867 0 858 0.005



