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Reinforcement Learning (RL)

Agent and environment interact at discrete time t = 0, 1, 2, 3, . . .

At each time step t, agent observes the state St

take action At

get reward Rt

go to the corresponding next state St+1
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Limitations of Existing Exploration Algorithms

Simple exploration methods, which can be inefficient for discovering
high-reward states, may result in high sample complexity.
Sophisticated exploration strategies that are efficient for prespecified
reward function exist.

In practice, reward functions are typically iteratively engineered to
encourage desired behavior. If sophisticated methods are applied for
each time reward functions are updated, it can be sample inefficient.
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Reward-Free RL (Jin et al., 2020)

Goal: develop a more efficient exploration approach that doesn’t rely
on explicit reward information.

Exploration Phase: efficiently explore the environment without reward
information through Protocol 1.

Planning Phase: derive a near-optimal policy with any given reward
only using the dataset gathered during the exploration phase without
further interaction with the environment.
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Risk-Sensitive RL

In safety-critical scenarios, decision-makers prioritize mitigating
low-probability but high-impact risks.

Many risk measures have been investigated, but coherent risk
measures are preferred due to their properties: 1) monotonicity; 2)
positive-homogeneity; 3) sub-additivity; 4) translation-invariance.
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Conditional Value-at-Risk (CVaR)

For a random variable X , CVaR at a given risk tolerance τ ∈ (0, 1] is
defined as

CVaRτ (X ) := sup
b∈R

(
b − τ−1E[(b − X )+]

)
, (1)

where x+ := max(0, x).

CVaR is coherent and can effectively quantify the average outcome in
the worst τ -percentile of scenario.
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Motivation

Is it possible to design provably efficient risk-sensitive reward-free RL
algorithm?

CVaR-RF-Exploration: design an efficient CVaR reward-free
exploration algorithm.

CVaR-RF-Planning: derive a PAC algorithm to solve CVaR RL with
any given reward function based on the dataset gathered in
exploration phase.

Definition

A CVaR-RF exploration algorithm is (ε, δ)-PAC with a given risk tolerance
τ if for any reward function r ,

P
(
Es1∼P1

[
CVaR?τ (s1; r)− CVaRρ̂τ (s1; r)

]
≤ ε
)
≥ 1− δ.
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Augmented MDP

(Baüerle & Ott, 2011) establish the existence of an optimal policy
that is deterministic and Markovian within the augmented MDP
(ΠAug). The augmented state space is denoted by SAug = S × [0,H],
where [0,H] is the augmented space for initial budget b.
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Value Functions

For any policy ρ ∈ ΠAug, we define:

V ρ
h (sh, bh) = Eρ

(bh − H∑
h′=h

rh′(sh′ , ah′)

)+ ∣∣∣∣sh, bh
 ,

Qρ
h (sh, bh, ah) = Eρ

(bh − H∑
h′=h

rh′(sh′ , ah′)

)+ ∣∣∣∣sh, bh, ah
 .
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Objective and Goal

The CVaR objective is

CVaRρτ (s1) = max
b1∈[0,H]

{b1 − τ−1V ρ
1 (s1, b1)}.

The goal is to optimize

CVaR?τ (s1) = max
b1∈[0,H]

{b1 − τ−1 min
ρ∈ΠAug

V ρ
1 (s1, b1)},

and find the corresponding optimal policy ρ? with optimal initial
budget b?1.
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Bellman Equations

For CVaR RL, the Bellman Equations are defined as:

V ρ
h (sh, bh) = Eah∼ρh(sh,bh)

[
Qρ

h (sh, bh, ah)
]
,

Qρ
h (sh, bh, ah) = [PhVh+1] (sh, bh, ah),

where bh+1 = bh − rh and V ρ
H+1(s, b) = b+

1 := max(0, b1).

Similarly, we define the optimal conditions as:

V ?
h (sh, bh) = min

a∈A
Q?

h(sh, ah, bh),

ρ?h(sh, bh) = argmina∈AQ
?
h(sh, bh, ah)],

Q?
h(sh, bh, ah) =

[
PhV

?
h+1

]
(sh, bh, ah),

where bh+1 = bh − rh and V ?
H+1(s, b) = b+

1 = max(0, b1).

The optimality has been demonstrated in (Wang et al., 2023).
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Key Lemma

Lemma

An algorithm is (ε, δ)-PAC for CVaR-RF exploration with a given risk
tolerance τ if for any reward function r and for any b1 ∈ [0,H],∣∣∣V ρ

1 (s1, b1; r)− V̂ ρ
1 (s1, b1; r)

∣∣∣ ≤ ετ/3.

Establish a connection between CVaR-RF RL with risk-neutral
reward-free RL and solve the complexity added by the adoption of
CVaR.
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Methodology

Assume the optimization error in planning phase is bounded (could be
easily satisfied by existing CVaR RL algorithms).

Define the estimation error:

êt,ρh (sh, bh, ah; r) :=
∣∣∣Q̂t,ρ

h (sh, bh, ah; r)− Qρ
h (sh, bh, ah; r)

∣∣∣ .
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Error Upper Bound

Definition

The upper confidence bound E t
h(sh, ah) for the error, recursively defined as

follows: E t
H+1(s,a) = 0 for all (s, a), and for all h ∈ [H], with the

convention 1
0 = +∞,

E t
h(sh, ah) = min

{
H,H

√
2β(nth(s, a), δ)

nth(s, a)
+
∑
s′

P̂t
h(s ′|s, a) max

a
E t
h+1(s ′, a)

}
,

(refers to Eq (8) in Algorithm 1)

where β(n, δ) is a threshold function, an input to the algorithm, the choice
of which will be discussed later.
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Error Upper Bound

Consider an event

E =

{
∀t ∈ N,∀h ∈ [H],∀(s, a),

KL(P̂t
h(·|s, a),Ph(·|s, a)) ≤

β(nth(s, a), δ)

nth(s, a)

}
,

Theorem

For any policy ρ, any reward function r and any b,

êt,ρh (s, b, a; r) ≤ E t
h(s, a)

holds on event E .
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Algorithm Design

Sampling rule: the exploration policy πt+1 is the greedy policy with
respect to E t(s, a), such that for all s ∈ S and h ∈ [H]:

πt+1
h (sh) = argmaxaE

t
h(s, a). (refers to Eq (9) in Algorithm 1)

Stopping rule: the algorithm stops at

tstop = inf{t : E t
h(s1, π

t+1
1 (s1)) ≤ ετ/3}.
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Theoretical Guarantees

Theorem

Using threshold β(n, δ) = log(2SAH/δ) + (S − 1) log(e(1 + n/(S − 1))),
the CVaR-RF-UCRL is (ε, δ)-PAC for CVaR-RF exploration. The number

of trajectories collected in the exploration phase is bounded by Õ
(
S2AH4

ε2τ2

)
.

Compared with risk-neutral reward-free approaches, the denominator
of the bound we obtained is related to the risk tolerance parameter τ .

This is expected since CVaR is interpreted as the mean of the tail
distribution with an area under the curve equal to τ , it requires more
trajectories for smaller τ values and fewer trajectories for larger τ
values.
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(
S2AH4

ε2τ2

)
.

Compared with risk-neutral reward-free approaches, the denominator
of the bound we obtained is related to the risk tolerance parameter τ .

This is expected since CVaR is interpreted as the mean of the tail
distribution with an area under the curve equal to τ , it requires more
trajectories for smaller τ values and fewer trajectories for larger τ
values.

Xinyi Ni, Guanlin Liu, Lifeng Lai ICML, 2024 22 / 36



Outline

1 Introduction

2 Problem Statement

3 CVaR-RF-Exploration

4 CVaR-RF-Planning

5 Experiments

6 Conclusion

Xinyi Ni, Guanlin Liu, Lifeng Lai ICML, 2024 23 / 36



Framework

Compute the empirical transition matrix based on the dataset
collected by CVaR-RF-UCRL

Find a near-optimal policy by employing a
‘APPROXIMATE-CVaR-SOLVER’, which can be any algorithm
designed to find an δ/3-suboptimal policy for CVaR RL with known
transition matrix and reward.

Xinyi Ni, Guanlin Liu, Lifeng Lai ICML, 2024 24 / 36



Approximate-CVaR-Solver

Iteratively solve the Bellman optimality equations in a dynamic
programming manner.

The greedy policy induced by the resulting Q? yields the optimal
policy without errors.
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Discretization

CVaR-VI faces computational challenges due to the dynamic
programming step, which requires optimization over all b ∈ [0,H],
involving the maximization of a non-concave function.
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Computational Complexity and Error

Theorem

The CVaR-VI-DISC has a run time of O(S2AHη−2) in the discretized

MDP. Setting η = ετ/3H, the run time is O(S
2AH3

ε2τ2 ).

Theorem

By selecting η ≤ ετ/3H, we ensure that

|CVaRρ
?

τ (s1; r)− CVaRρ̂τ (s1; r)| ≤ ε/3, (2)

where ρ? represents the policy generated by Algorithm 3 and ρ̂ is the
output of Algorithm 4. Consequently, the optimization error is bounded by
ε/3, which satisfies the assumption.
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Adaptability

Proposition

For any τ ′ ≥ τ , the exploration dataset obtained through Algorithm 1 at
risk tolerance τ contains the requisite information for conducting CVaR-RF
RL with any higher risk tolerance τ ′. Consequently, the planning phase is
also compatible with any given τ ′ ≥ τ .

Underscore the adaptability of our exploration process to different
levels of risk tolerance τ :
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Lower Bound

Theorem

Consider a universal constant C > 0. For a given risk tolerance τ ∈ (0, 1],
if the number of actions A ≥ 2, the number of states S ≥ C log2 A + 2,
the horizon H ≥ C log2 S + 1, and the accuracy parameter
ε ≤ min{1/4τ,H/48τ}, then any CVaR-RF exploration algorithm that can
output ε-optimal policies for an arbitrary number of adaptively chosen
reward functions with a success probability δ = 1/2 must collect at least
Ω(S2AH2/τε2) trajectories in expectation.

Compared with the lower bound, the upper bound established before
has by an additional factor of H2 and 1/τ , while being tight with
respect to the parameters S , A, ε. If τ is a constant, our result is
nearly minimax-optimal with an additional factor on H2.
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Environment

A grid-world consisting of 21×21 states, where each state offers four
possible actions: up, down, left, right.

Agent will move to the correct state with a prob of 0.95 and to one of
the other three directions with a prob of 0.05/3 each.
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Reward

Setup 1: The agent starts at position (10,10), and the reward is 0 for
most states except at (16,16) ,where it is 1.

Setup 2: The agent starts at position (10,10), and the reward is 0.5
for most states except at (16,16), where it is 1, and a zero-reward
zone marked ’x’ from (12,10) to (12,16) (obstacles)
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Results
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Conclusion

Introduced CVaR-RF, which is able to solve CVaR RL for given any
reward function after a singular reward-free exploration.

Proposed CVaR-RF-UCRL as the exploration algorithm and
established upper and lower bounds for the sample complexity.

Developed a CVaR-RF-planning algorithm, equipped with CVaR-VI
and CVaR-VI-DISC to generate near-optimal Markov policies solely
based on the exploration dataset and given reward function.

Demonstrated CVaR-RF-Exploration has the adaptability to different
levels of risk tolerance.

Derived the lower bound for any exploration algorithm in CVaR-RF
framework.

Validated the effectiveness and practicality of our CVaR-RF
framework.
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