# Implicit Bias of Policy Gradient in Linear Quadratic Control: Extrapolation to Unseen Initial States

### Noam Razin\*

Joint work with Yotam Alexander<sup>\*</sup>, Edo Cohen-Karlik, Raja Giryes, Amir Globerson, Nadav Cohen



### **Policy Gradient in Optimal Control**

#### **Optimal Control Problem**

$$\bigcirc$$
 System: Starting from an initial state  $\mathbf{x}_0$ 

$$\mathbf{x}_{h+1} = f(\mathbf{x}_h, \mathbf{u}_h) \qquad h = 0, \dots, H-1$$

$$f(\mathbf{x}_h, \mathbf{u}_h) \qquad f(\mathbf{x}_h, \mathbf{u}_$$

**Goal:** Choose controls that minimize the cost  $\sum_{h=0}^{H} c(\mathbf{x}_h, \mathbf{u}_h)$ 

#### **Policy Gradient**



- (Fig) Parameterize controller (e.g. as neural network)
  - Minimize cost via gradient descent w.r.t. controller parameters

### **Extrapolation to Unseen Initial States**

**Issue of Prime Importance:** Extrapolation to **initial states unseen in training** 



Often multiple controllers minimize cost for **initial states seen in training** 



Extrapolation is determined by the implicit bias of policy gradient

Effect of implicit bias on extrapolation was theoretically studied in supervised learning

(Xu et al. 2021, Abbe et al. 2022/23, Cohen-Karlik et al. 2022/23)

limited understanding in control

## Main Contributions: Effect of Implicit Bias on Extrapolation

**Q:** To what extent does the implicit bias of policy gradient lead to extrapolation to initial states unseen in training?



**Theory for the Linear Quadratic Regulator (LQR) Problem: Extrapolation depends on exploration** induced by the system from initial states seen in training



#### **Experiments**:

Support theory for LQR and demonstrate its conclusions apply to non-linear systems and neural network controllers

#### **Going Forward:**

- We hope our work will encourage further research on implicit bias in control
- Potential practical application: Algorithms for selecting initial states to train on