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Generalization on the Unseen

Consider the target function f (x1, . . . , xd) = x1 · x2 on the training
domain {x ∈ Ω | (x1 − 1)(x2 − 1) = 0}. Where will the model
converge on the unseen part of the domain? As shown by [Abbe et al.,
2023], when considering the boolean domain Ω = {±1}d and sparse
regime (d → ∞), a set of models including the Random Feature model
and Transformer converge to the minimum-degree interpolator (MDI),
which is given in this case by x1 + x2 − 1.

Main Question

Does the min-degree bias extend beyond the boolean
domains?

Random Feature Model

Random Features (RF) model: fRF(a; x) = 1√
N

∑N
i=1 aiϕwi,bi

(x),
x ∈ Rd, where ϕw,b(x) = σ(⟨w, x⟩ + b) are the random features.
Here, only parameter a ∈ Rd is trainable, while parameters {wi}N

i=1
and {bi}N

i=1 are sampled randomly and then fixed during the training.
Sparse regime: wi ∼ N (0, 1

dId), b ∼ N (0, 1
d), and d → ∞.

Small feature regime: wi ∼ N (0, εId), b ∼ N (0, ε), ε → 0.

RF Model in Sparse Regime Breaks the MDI
Bias in Real-Valued Domain

Table: Training the Random Feature model on f (x) = 1, x ∈ Rd with GOTU
constraint x1 = 1 in sparse regime. Here, d = 15 and N = 1024. In the second and
the third column, you can see the monomial coefficient learnt by model.

Activation 1 x1

(1 + x)2 0.624 ± 0.017 0.374 ± 0.017
ReLU 0.564 ± 0.009 0.431 ± 0.011
Shifted ReLU 0.782 ± 0.009 0.217 ± 0.011
Sigmoid 0.992 ± 0.003 0.007 ± 0.002
Softplus 0.789 ± 0.010 0.208 ± 0.012

RF Model in Small Feature Regime Preserves
MDI Bias in Real-Valued Domain

Main Theorem (Informal)

As the number of random features N → ∞ before the random fea-
tures scale ε → 0, the Random Feature model with polynomial ac-
tivation converges to some interpolator of minimum degree in small
feature regime.

Table: Training the Random Feature model on f (x) = 1, x ∈ Rd with GOTU
constraint x1 = 1 in small feature regime with ε = (0.03)2. Here, d = 15 and
N = 1024.

Activation 1 x1

(1 + x)2 0.997 ± 0.002 0.001 ± 0.003
ReLU 0.564 ± 0.009 0.430 ± 0.010
Shifted ReLU 1.000 ± 0.000 −0.001 ± 0.003
Sigmoid 1.000 ± 0.000 −0.001 ± 0.003
Softplus 1.000 ± 0.001 −0.001 ± 0.003

Motivation for Small Feature Regime

Consider the setting of multi-index model where we learn the target of
the form

f (x) = φ(U⊤x)
where f : Rd → R, φ : Rk → R, U ∈ Rd×k : U⊤U = Ik, k is fixed
dimension and d ≫ 1 is large dimension.
Define the loss function as L(a) = 1

2Ex

[(
f (x) − fRF(a; x)

)2]
.

Proposition

L(a) = 1
2
Ez


φ(z) −

N∑
i=1

aiσi(⟨U⊤wi, z⟩ + ci)
2 + 1

2
a⊤Λa ,

where z = U⊤x and Λ ⪰ 0.

Intuition: high-dimensional regression problem in x ∈ Rd reduces
to lower-dimensional in z ∈ Rk with an additional regularizer term
1
2a

⊤Λa. Moreover, if wi ∼ N (0, 1
dId), then U⊤wi ∼ N (0, 1

dIk), and the
latter corresponds to the small feature regime.

MDI for Data Embedded in Roots of Unity

Consider learning the target function f : Ud
n → C, where Un denotes

n-roots of unity, using the complex Random Feature model, for which
ai ∈ C, wi ∼ CN (0, 1

dId), bi ∼ CN (0, 1
dId), where CN is complex

standard normal distribution.

Theorem (Informal)

As the number of random features N → ∞ before the dimension
d → ∞, the complex Random Feature model converges to the in-
terpolator of minimum degree.

What about Transformer?

lr = 10−4 lr = 10−5

Training Transformer on f (x) = x1x2, x ∈ {−1, 0, 1}d with GOTU
constraint (x1 − 1)(x2 − 1) = 0 in dimension d = 15 using AdamW
optimizer. The MDI is given by x1 +x2 −1, but the Transformer (with
lr = 10−4) converges close to fint(x) = 1

2(x1+x2−x2
1+x1x2−x2

2+x2
1x

2
2).

Future Work

• What if not min-degree bias governs the generalization of the
Random Feature and Transformer models on the real-valued
domains?
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• [Abbe et al., 2023] : Generalization on the Unseen, Logic Reasoning
and Degree Curriculum.


