On the Minimal Degree Bias in Generalization on the
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(Generalization on the Unseen

Consider the target function f(x1,...,x4) = x; - 9 on the training
domain {x € Q | (z; — 1)(xzs — 1) = 0}. Where will the model
converge on the unseen part of the domain? As shown by [Abbe et al.,
2023/, when considering the boolean domain Q = {£1}? and sparse
regime (d — 00), a set of models including the Random Feature model
and Transformer converge to the minimum-degree interpolator (MDI),
which is given in this case by x1 + x5 — 1.

Main Question

Does the min-degree bias extend beyond the boolean
domains?
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RF Model in Small Feature Regime Preserves
MDI Bias in Real-Valued Domain

Main Theorem (Informal)

As the number of random features N — oo before the random fea-
tures scale ¢ — 0, the Random Feature model with polynomial ac-
tivation converges to some interpolator of minimum degree in small
feature regime.

Table: Training the Random Feature model on f(z) = 1, € RY with GOTU
constraint 1 = 1 in small feature regime with ¢ = (0.03)*. Here, d = 15 and
N = 1024.

Random Feature Model

Random Features (RF) model: frp(a;z) =
r € RY where ¢, p(x) = o({w, z) + b) are the random features.

Here, only parameter a € R? is trainable, while parameters {w;}:
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and {b;}:¥, are sampled randomly and then fixed during the training.

Sparse regime: w; ~ N(0,51;), b ~ N(0

1
' d

), and d — oo.

Small feature regime: w; ~ N(0,el;), b ~ N(0,¢), e = 0.

RF Model in Sparse Regime Breaks the MDI
Bias in Real-Valued Domain

Table: Training the Random Feature model on f(z) = 1, € RY with GOTU

constraint &1 = 1 in sparse regime. Here, d = 15 and NV = 1024. In the second and
the third column, you can see the monomial coefficient learnt by model.

ACTIVATION 1 1

(14 x) 0.624 £+ 0.017 0.374 £+ 0.017
RELU 0.064 = 0.009 0.431 == 0.011
SHIFTED RELU 0.782 4 0.009 0.217 4 0.011
SIGMOID 0.992 £+ 0.003/0.007 £ 0.002
SOFTPLUS 0.789 £ 0.0100.208 £ 0.012

ACTIVATION 1 1

(1+ x)* 0.997 £ 0.002 0.001 4 0.003
RELU 0.504 + 0.009 0.430 4+ 0.010
SHIFTED RELU 1.000 £ 0.000/ —0.001 & 0.003
SIGMOID 1.000 = 0.000 —0.001 £+ 0.003
SOFTPLUS 1.000 £ 0.001 —0.001 £ 0.003

Motivation for Small Feature Regime

Consider the setting of multi-index model where we learn the target of
the form

f(x) = (U )
where f :RY - R, o : R¥ - R, U € R>F ;. U'U = I, k is fixed
dimension and d > 1 is large dimension.

Define the loss function as £(a) = JE, [(f(az) — fRE(a; x)ﬂ .

Proposition

| p(z) — %a@((UTwi, z) + ¢;) ]
(-2 )

where z = Uz and A >~ 0.

Intuition: high-dimensional regression problem in x € R? reduces

to lower-dimensional in z € R* with an additional regularizer term

%aT/\a. Moreover, if w; ~ N (0, clild)’ then U "w; ~ N(0, élk)a and the

latter corresponds to the small feature regime.
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MDI for Data Embedded in Roots of Unity

Consider learning the target function f : U¢ — C, where U,, denotes
n-roots of unity, using the complex Random Feature model, for which
a; € C, w; ~ CN(0,514), b; ~ CN(0,21;), where CN is complex

standard normal distribution.

Theorem (Informal)

As the number of random features N — oo before the dimension
d — o0, the complex Random Feature model converges to the in-
terpolator of minimum degree.

What about Transformer?
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Training Transformer on f(z) = x129, * € {—1,0,1} with GOTU
constraint (1 — 1)(xs — 1) = 0 in dimension d = 15 using AdamW
optimizer. The MDI is given by x1 + 29 — 1, but the Transformer (with

Ir = 107") converges close to fin(x) = 2(x1+29— 23+ 30— 25+ 2513).

Future Work

e What if not min-degree bias governs the generalization of the
Random Feature and Transtormer models on the real-valued
domains”?

Related Work

o [Abbe et al., 2023/ Generalization on the Unseen, Logic Reasoning
and Degree Curriculum.



