On the Minimal Degree Bias in Generalization on the **Unseen for non-Boolean Functions**

Generalization on the Unseen

Consider the target function $f(x_1, \ldots, x_d) = x_1 \cdot x_2$ on the training domain $\{x \in \Omega \mid (x_1 - 1)(x_2 - 1) = 0\}$. Where will the model converge on the unseen part of the domain? As shown by *Abbe et al.*, 2023, when considering the boolean domain $\Omega = \{\pm 1\}^d$ and sparse regime $(d \to \infty)$, a set of models including the Random Feature model and Transformer converge to the minimum-degree interpolator (MDI), which is given in this case by $x_1 + x_2 - 1$.

Main Question

Does the min-degree bias extend beyond the boolean domains?

Random Feature Model

Random Features (RF) model: $f_{RF}(a;x) = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} a_i \phi_{w_i,b_i}(x)$, $x \in \mathbb{R}^d$, where $\phi_{w,b}(x) = \sigma(\langle w, x \rangle + b)$ are the random features. Here, only parameter $a \in \mathbb{R}^d$ is trainable, while parameters $\{w_i\}_{i=1}^N$ and $\{b_i\}_{i=1}^N$ are sampled randomly and then fixed during the training. **Sparse regime:** $w_i \sim \mathcal{N}(0, \frac{1}{d}I_d), b \sim \mathcal{N}(0, \frac{1}{d}), \text{ and } d \to \infty.$ Small feature regime: $w_i \sim \mathcal{N}(0, \varepsilon I_d), b \sim \mathcal{N}(0, \varepsilon), \varepsilon \to 0.$

RF Model in Sparse Regime Breaks the MDI **Bias in Real-Valued Domain**

Table: Training the Random Feature model on f(x) = 1, $x \in \mathbb{R}^d$ with GOTU constraint $x_1 = 1$ in sparse regime. Here, d = 15 and N = 1024. In the second and the third column, you can see the monomial coefficient learnt by model.

ACTIVATION	1	$ x_1$
$(1+x)^2$	0.624 ± 0.017	0.374 ± 0.0
ReLU	0.564 ± 0.009	0.431 ± 0.0
Shifted ReLU	0.782 ± 0.009	0.217 ± 0.0
SIGMOID	0.992 ± 0.003	0.007 ± 0.0
Softplus	0.789 ± 0.010	0.208 ± 0.0

Denys Pushkin¹, Raphaël Berthier², Emmanuel Abbe^{1 3}

¹EPFL, ²Inria Sorbonne Université, ³Apple

017

011011

002

012

RF Model in Small Feature Regime Preserves MDI Bias in Real-Valued Domain

Main Theorem (Informal)

As the number of random features $N \to \infty$ before the random features scale $\varepsilon \to 0$, the Random Feature model with polynomial activation converges to some interpolator of minimum degree in small feature regime.

Table: Training the Random Feature model on f(x) = 1, $x \in \mathbb{R}^d$ with GOTU constraint $x_1 = 1$ in small feature regime with $\varepsilon = (0.03)^2$. Here, d = 15 and N = 1024.

ACTIVATION	1	x_1
$(1+x)^2$	0.997 ± 0.002	0.001 ± 0.003
ReLU	0.564 ± 0.009	0.430 ± 0.010
Shifted ReLU	1.000 ± 0.000	-0.001 ± 0.003
SIGMOID	1.000 ± 0.000	-0.001 ± 0.003
Softplus	$ 1.000 \pm 0.001 $	-0.001 ± 0.003

Motivation for Small Feature Regime

Consider the setting of multi-index model where we learn the target of the form

 $f(x) = \varphi(U)$ where $f : \mathbb{R}^d \to \mathbb{R}, \varphi : \mathbb{R}^k \to \mathbb{R}, U \in$ dimension and $d \gg 1$ is large dimension. Define the loss function as $\mathcal{L}(a) = \frac{1}{2}\mathbb{E}_x$

Proposition
$$\mathcal{L}(a) = \frac{1}{2} \mathbb{E}_{z} \left[\left(\varphi(z) - \sum_{i=1}^{N} a_{i} \overline{\sigma}_{i} (\langle U^{\top} w_{i}, z \rangle + c_{i}) \right)^{2} \right] + \frac{1}{2} a^{\top} \Lambda a ,$$
where $z = U^{\top} x$ and $\Lambda \succ 0$.

Intuition: high-dimensional regression problem in $x \in \mathbb{R}^d$ reduces to lower-dimensional in $z \in \mathbb{R}^k$ with an additional regularizer term $\frac{1}{2}a^{\top}\Lambda a$. Moreover, if $w_i \sim \mathcal{N}(0, \frac{1}{d}I_d)$, then $U^{\top}w_i \sim \mathcal{N}(0, \frac{1}{d}I_k)$, and the latter corresponds to the small feature regime.

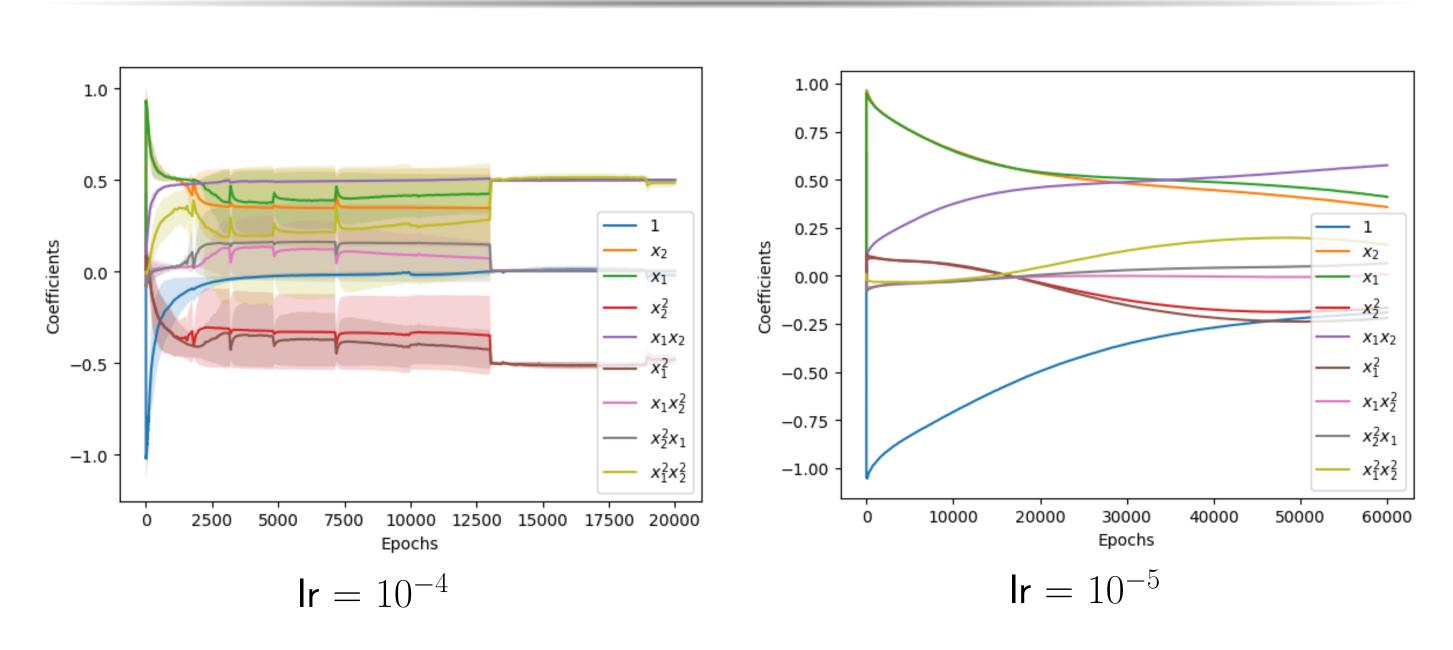
$$\begin{bmatrix} x \\ \mathbb{R}^{d \times k} \\ \vdots \\ U^{\top}U = I_k, \ k \text{ is fixed} \\ \vdots \\ \left(f(x) - f_{\mathrm{RF}}(a;x)\right)^2 \end{bmatrix}.$$

MDI for Data Embedded in Roots of Unity

Consider learning the target function $f : \mathbb{U}_n^d \to \mathbb{C}$, where \mathbb{U}_n denotes *n*-roots of unity, using the complex Random Feature model, for which $a_i \in \mathbb{C}, w_i \sim \mathcal{CN}(0, \frac{1}{d}I_d), b_i \sim \mathcal{CN}(0, \frac{1}{d}I_d), \text{ where } \mathcal{CN} \text{ is complex}$ standard normal distribution.

Theorem (Informal)

As the number of random features $N \to \infty$ before the dimension $d \to \infty$, the complex Random Feature model converges to the interpolator of minimum degree.



- domains?
- and Degree Curriculum.

What about Transformer?

Training Transformer on $f(x) = x_1 x_2, x \in \{-1, 0, 1\}^d$ with GOTU constraint $(x_1 - 1)(x_2 - 1) = 0$ in dimension d = 15 using AdamW optimizer. The MDI is given by $x_1 + x_2 - 1$, but the Transformer (with $lr = 10^{-4}$) converges close to $f_{int}(x) = \frac{1}{2}(x_1 + x_2 - x_1^2 + x_1x_2 - x_2^2 + x_1^2x_2^2).$

Future Work

• What if not min-degree bias governs the generalization of the Random Feature and Transformer models on the real-valued

Related Work

• [Abbe et al., 2023]: Generalization on the Unseen, Logic Reasoning