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Loss Landscape Visualization

* Asthe complexity of neural networks has increased
exponentially in recent years, researchers are showing
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great interest in qualitatively studying the properties of N
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their loss landscape. QWSS Y o

* Loss landscape visualization has recently been used to
assess neural networks in several ways, including their

generalization performance and training convergence.
(Amini et. al. 2019)
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Loss Landscape Visualization
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* However, current approaches use linear 0
techniques to visualize 2D planar slices, e
leading to severe limitations: 0o
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o Additional complications arise regarding (Liet. al. 2018)

the choice of the location, orientation,

and the scale of the visualization plane — i
and its grid. == = ©

* Problem #1: Current loss
landscape visualization
methods suffer from limitations
and inaccuracies.

(Chatzimichailidis et. al. 2019)



Knowledge-Guided ML

* The KGML framework aims at achieving better
model generalizability by imbuing neural
networks with domain knowledge (e.g., through
regularization terms).

* This framework has been applied in many
fields, including biology and physics.

Training a physics-informed
neural network
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Knowledge-Guided ML (KGML)

* Inthis work, we focus on 2 applications:
o PINNs for solving differential equations.
o CoPhy-PGNN for eigen-decomposition. Glgbal Minima Local Minima

PG Loss |

* Despiteitsresounding success, there is still a
lack of a comprehensive understanding of how
the.KG‘ML.framework affects the model CoPhy-PGNN
optimization process. (Elhamod and Bu et. al. 2022)

PG Loss 2

Training a physics-informed
neural network

physical
quantities

* Problem #2: The mechanisms
underlying the KGML framework

Compute derivatives and
minimise underlying
equation residual

are still not fully understood.

(Courtesy of Ben Moseley)



Research Goals

e Problem #1: Current loss

landscaper visualization

methods suffer from limitations * Research Goals:
and inaccuracies. 1. To devise a loss landscape visualization

approach that addresses the limitations
of current methods.

2. Touse the new approach to better
understand the mechanisms underlying
the KGML framework.

e Problem #2: The mechanisms

underlying the KGML framework
are still not fully understood.




Main ldea

e Currentapproach: * Proposed approach:
Projecting the high-dimensional training Finding a 2D manifold that faithfully captures the
trajectory on a 2D plane. high-dimensional training trajectory.




Main ldea

e Currentapproach: * Proposed approach:

Using PCA. Using an auto-encoder.
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Neuro-Visualizer

* Guided by the reconstruction loss,

the auto-encoder is trained and
learns a 2D embedding that is
sufficient to faithfully reconstruct
the training trajectory in the
original high-dimensional
parameter space.
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Neuro-Visualizer

* Traversing and sampling the Neuro-

Loss
calculation

\ | 4

L )

Visualizer’s latent space provides
the grid layout.

* Using the decoder, the grid is
projected back into high
dimensional space as a 2D
manifold.

* Using the reconstructed manifold,
the grid’s loss heatmap is now
calculated and visualized.

Loss landscape
visualization
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Neuro-Visualizer

N’

* Imposing additional constraints as | | y
loss functions allows the learned Input Trajectory ‘ e ctoryand Gri
manifold to be molded to have Reconstruction
certain desired properties.
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Neuro-Visualizer

Imposing additional constraints as
loss functions allows the learned
manifold to be molded to have
certain desired properties.

No constraints
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Results

CoPhy-PGNN (Physics-Guided Neural Nets)

 Neuro-Visualizer offers much
richer details.

 Neuro-Visualizer fits the
trajectory more accurately.

(a) PCA (zoomed-in)

Metric | Neuro- PCA | Kernel- | UMAP
Visualizer PCA

Erelative | 0.0095 1.6782 | 4.7250 | 0.4295

Eproj 0.0005 0.2832 | 0.0865 | 0.2307

(b) Neuro-Visualizer (zoomed-in)
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Results:
PINNs (Physics-Informed Neural Nets)

* How does B impact the convergence of a PINN when solving a
Convection PDE?
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(b) 3 =10

Conclusion: Optimization becomes more difficult as B increases. This is
due to a corresponding increase in loss landscape complexity.
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Results:
PINNSs (Physics-Informed Neural Nets)

* How does the choice of weight balancing technique impact a
PINN’s convergence?

(b) Ltest

Conclusion: Different techniques arrive at different minima. There is no
single technique that universally outperforms the rest. Feasibility highly
depends on the differential equation in question.
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https://github.com/elhamod/NeuroVisualizer
https://proceedings.mlr.press/v235/elhamod24a.html
mailto:elhamod@vt.edu
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