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Prior Work: Automatic Reward RL-VLM-F: Rewards from VLM Preferences Experiments and Analysis
Generation from Foundation Models Over Agent Observations
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e Ground truth state info > How does RL-VLM-F compare to baselines?
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often of high variance and noisy

_ * RL-VLM-F outperforms all baselines in all tasks
Method Overview * RL-VLM-F matches/surpasses the ground-truth preference oracle on 6 of 7 tasks.
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