

Motivation & Contribution

 In certain professional field where data is scarce and modality specific, the need for specialized models becomes apparent.

Initial Vorticity

• Directly pre-training a large model **from scratch** on the target modality performs poorly.

Error_Rate	NinaPro	PSICOV	
Туре	Gesture recognition	Protein prediction	
Data Size	3956	3606	
Pretrained model	9.96	5.09	
Specialized model	6.60	2.94	

• There is a **significant disparity** between the source and target modalities, and their label spaces do not overlap at all, it is difficult to leverage pretrained large models on image or text data with rich annotations for cross-modal transfer.

Enhancing Cross-Modal Fine-Tuning with Gradually Intermediate Modality Generation

Lincan Cai¹

Shuang Li^{1, A} Wenxuan Ma¹ Jingxuan Kang² Binhui Xie¹ Zixun Sun³ Chengwei Zhu³ ¹Beijing Institute of Technology ²University of Illinois Urbana Champaign ³Tencent Email: lincancai@bit.edu.cn & shuangli@bit.edu.cn

We gradually constructs **intermediate modalities** from the source modality to the target modality, **bridging the modality gap**.

• Utilize **Curriculum Learning**, allowing the model to transition from intermediate modality data that is closer to the source modality to that is closer to the target modality. This enables a gradual transfer from easy to difficult tasks.

✓ Architecture Design

- Source and target modality embedder f^s and f^t .
- Source and target modality predictor h^s and h^t .
- Pretrained feature encoder g.

✓ Gate Network

- A Fully Connected Layer
- **Softmax** function.
- Effectively selects the **most** classification.

Paper

followed by a **Sigmoid** Layer. • Ensuring gradient flow during backpropagation using **Gumble**

informative patches of both source and target modality for

Code

Table 1: Prediction errors (\downarrow) across 10 diverse tasks on NAS-Bench-360. "FPT" and "NFT" respectively represent fine-tuning only the layer normalization of the model and performing one-stage full fine-tuning of the model.

	CIFAR-100 0-1 error (%)	Spherical 0-1 error (%)	Darcy Flow relative ℓ_2	PSICOV MAE ₈	Cosmic 1-AUROC	NinaPro 0-1 error (%)	FSD50K 1-mAP	ECG 1-F1 score	Satellite 0-1 error (%)	DeepSEA 1-AUROC
Hand-designed	19.39	67.41	8.00E-03	3.35	0.127	8.73	0.62	0.28	19.80	0.30
NAS-Bench-360 DASH	23.39 24.37	48.23 71.28	2.60E-03 7.90E-03	2.94 3.30	0.229 0.190	7.34 6.60	0.60 0.60	0.34 0.32	12.51 12.28	0.32 0.28
Perceiver IO FPT	70.04 10.11	82.57 76.38	2.40E-02 2.10E-02	8.06 4.66	0.485 0.233	22.22 15.69	0.72 0.67	0.66 0.50	15.93 20.83	0.38 0.37
NFT ORCA	7.67 6.53	55.26 29.85	7.34E-03 7.28E-03	1.92 1.91	0.170 0.152	8.35 7.54	0.63 0.56	0.44 0.28	13.86 11.59	0.51 0.29
PaRe	6.25	25.55	7.00E-03	0.99	0.121	6.53	0.55	0.28	11.18	0.28

Table 2: Normalized Root Mean Squared Errors (nRMSEs, \downarrow) across 8 tasks of PDEBench. PaRe surpasses U-Net and PINN in all tasks, outperforms ORCA in 6 out of 8 tasks, and exhibits performance comparable to FNO.

	Advection 1D	Burgers 1D	Diffusion-Reaction 1D	Diffusion-Sorption 1D	Navier-Stokes 1D	Darcy-Flow 2D	Shallow-Water 2D	Diffusion-Reaction 2D
PINN	6.70E-01	3.60E-01	6.00E-03	1.50E-01	7.20E-01	1.80E-01	8.30E-02	8.40E-01
FNO	1.10E-02	3.10E-03	1.40E-03	1.70E-03	6.80E-02	2.20E-01	4.40E-03	1.20E-01
U-Net	1.10E+00	9.90E-01	8.00E-02	2.20E-01	-	-	1.70E-02	1.60E+00
ORCA	9.80E-03	1.20E-02	3.00E-03	1.60E-03	6.20E-02	8.10E-02	6.00E-03	8.20E-01
PaRe	2.70E-03	8.30E-03	2.60E-03	1.60E-03	6.62E-02	8.06E-02	5.70E-03	8.18E-01

Table 4: Comparison prediction errors (\downarrow) of traditional mixing strategies and PaRe variants across 10 diverse tasks, and the impact of varying strategies for different values of k, where "non-gradual" indicates a constant k, while the other three represent different strategies for decreasing k.

	Method	CIFAR-100	Spherical	Darcy Flow	PSICOV	Cosmic	NinaPro	FSD50K	ECG	Satellite	DeepSEA
	Mixup	6.59	26.60	7.70E-03	0.99	0.500	7.74	0.56	0.29	11.51	0.29
	CutMix	6.11	27.76	7.20E-03	0.99	0.135	8.41	0.56	0.29	11.58	0.28
PaRe	w/ non-gradual	6.59	27.68	7.20E-03	0.99	0.138	7.59	0.57	0.28	11.61	0.29
	w/ piecewise	6.22	26.88	6.90E-03	0.99	0.132	6.98	0.56	0.29	10.89	0.29
	w/ exponential	6.38	26.35	7.00E-03	0.99	0.119	7.13	0.55	0.28	11.56	0.28
	w/ linear (default)	6.25	25.55	7.00E-03	0.99	0.121	6.53	0.55	0.28	11.18	0.28

Table 5: Comparison prediction errors (\downarrow) between different strategies (Random vs. Gate) to select patches for replacement.

	CIFAR-100	Spherical	Darcy Flow	PSICOV	Cosmic	NinaPro	FSD50K	ECG	Satellite	DeepSEA
Random	6.52	28.06	7.10E-03	0.99	0.146	6.98	0.56	0.29	11.32	0.28
Gate	6.25	25.55	7.00E-03	0.99	0.121	6.53	0.55	0.28	11.18	0.28

Experiment

PaRe (ours)