
Measures of diversity and space-filling designs for categorical data
Cedric Malherbe1, Emilio Dominguez, Merwan Barlier, Igor Colin2, Haitham Bou-Ammar3, Tom Diethe1

1 Centre for AI, BioPharmaceuticals R&D, AstraZeneca, 2 LTCI, Télécom Paris, 3 Huawei Technologies

Summary
Problem How to measure the diversity of

discrete sequences (e.g. biological and text
data)? How to be create balanced training
sets for such data?

Goal Design efficient algorithms to provide
diverse sets of discrete sequences and
provide algorithms to measure their
diversity

Approach Relies on combinatorial optimization
and greedy algorithms to create
approximate algorithms

Problem statement
Diversity problem
Given a number n ≥ 1 of points to select, we
aim at constructing a subset Dn = (x1, . . . , xn)
of n points in the boolean hypercube, denoted
here by = {0, 1}d for any dimension d ≥ 2, called
a design, that preserves the diversity of the
space suitably. Since the notion of diversity does
not admit a unique definition, we will focus on
designs solutions to the following problems:

find D∗n := (x1, . . . xn) ∈n
such that ℓ(D∗n) = minDn∈n ℓ(Dn)

(1)

where ℓ :n→ R is a fixed measure of the diversity
of a design Dn. To be more precise, we focus
on creating designs optimizing three different
diversity measures which are further defined be-
low: the covering radius, the packing radius, and
the average covering.

Contributions
▶ Three notions of diversity in categorical

spaces: the average covering, packing, and
covering radii,

▶ Theoretical results for the construction of
optimal categorical designs

▶ Two novel approximation algorithms based
on greedy schemes GRIPPR and GAC

▶ Experimental results validating the
efficiency of the method

Measures of
diversity
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Figure 1: Top: 7 points that optimize the Packing Radius,
Covering Radius, and Average Covering in the continuous
space X = [0, 1]2. The and radii are plotted in grey as
well as the level sets of the function x 7→ d(x,Dn).
Bottom: 5 points provided in this paper which optimize
the same diversity metrics when X8 = {0, 1}8 is a
categorical space.

Definition
(Packing Radius). Let Dn = (x1, . . . , xn) ∈ X n be
any design of n ≥ 2 points of the categorical
space. Then, we define the packing radius of
the design Dn as follows:

PR(Dn) := min
xi ̸=xj∈Dn

dH(xi, xj)

2
.

Definition
(Covering Radius). Let Dn = (x1, . . . , xn) be any
design of n ≥ 1 points of the categorical space.
Then, we define the covering radius of the
design Dn over as follows:
CR(Dn) := max

x∈X
dH(x,Dn) = max

x∈X
min
i=1...n

dH(x, xi).

Definition
(Average Covering). The average covering of a
design Dn = (x1, . . . , xn) of n ≥ 1 points of the
boolean hypercube is defined as follows:
AC(Dn) := E [dH(X,Dn)] = E

[
min
i=1...n

dH(X, xi)
]
.

where X ∼ U(X ) is uniformly distributed over
the space.

Algorithms for
diversity
GRIPPR
Input: Dimensionality d ≥ 1 of the categorical
space, size n ≥ 2 of the design

1. Set randomly the first design point D1← {x1}
where x1 ∼ U(X )
3. For t = 1, ..., n− 1:
Set

xt+1← argmax
x∈

d(x,Dt)

Add the point to the design: Dt+1← Dt ∪ {xt+1}
4. Return the design Dn

Theorem
The design Dn of GRIPPR satisfies:

CR∗n ≤ CR(Dn) ≤ 2 · CR∗n
and

1

2
· PR∗n ≤ PR(Dn) ≤ PR∗n.

GAC
Input: Dimensionality d ≥ 1 of the categorical
space, size n ≥ 2 of the design

1. Set randomly the first design point D1← {x1}
where x1 ∼ U(X )
2. For t = 1, ..., n− 1:
Get any point that greedily minimizes the
average covering:

xt+1 ∈ argmin
x∈X

X∼U()[dH(X,Dt ∪ {x})]

Set the novel design point: xt+1← (x∗1, . . . , x
∗
d)

Add the point to the design: Dt+1← Dt ∪ {xt+1}
4. Return the design Dn

Theorem
The design Dn of GAC satisfies:

AC∗1 − AC∗n
2

≤ AC∗1 − AC(Dn) ≤ AC∗1 − AC∗n.

Empirical results
The graph displays the evolution of the diversity measures PR(Dn),
CR(Dn) and AC(Dn) for different design sizes n ∈ {2, . . . , 50}
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The top line considers the case when d = 7 and the bottom line
considers the case when d = 8. For each of the plots, lower is better.
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The graphs display the average approximation error F̂n(Dn) −
EX∼U()[f (X)] in bold for various design sizes n ∈ {1, . . . , 50}, and the
transparent colors represent the 90% and 10% quantile of the error
computed over 100 runs with d = 10 for OneMax f (x) =

∑d
i=1 I{xi = 1}

(Top) and Harmonic f (x) =
∑d

i=1 i
2I{xi = 1} (Bottom).
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