How Universal Polynomial Bases Enhance Spectral Graph Neural **Networks: Heterophily, Over-smoothing, and Over-squashing**

Introduction

Message Passing in Graph Neural Networks (GNNs)

UNIVERSITY OF

MBRIDGE

Keke Huang¹, Yu Guang Wang², Ming Li³, Pietro Liò⁴

Insight Two: Asymptotical convergence

Spectral Graph Neural Networks Spectral Graph Filters on Graph Signals

$$L = I - D^{-1/2}AD^{-1/2} = U\Lambda U^T = U\begin{pmatrix}\lambda_1 & & \\ & \dots & \\ & & \lambda_n\end{pmatrix}U^T$$

Laplacian Matrix on Graph Signals

- Learnable Spectral Graph Filters
 - □ Spectral filter $g_w(\cdot)$ parameterized by parameter $w \in \mathbb{R}^n$

 $g_w(L) \cdot \mathbf{x} = Ug_w(\Lambda)U^T \cdot \mathbf{x}$ $g_w(\Lambda) = \text{diag} [g_w(\lambda_1), g_w(\lambda_2), \dots, g_w(\lambda_n)]$

□ Challenge

• Time complexity: $O(n^3)$

Polynomial Approximation

 \Box A graph signal x, an integer K, and propagation matrix P $\in \mathbb{R}^{n \times n}$

 $z = Ug_{w(\Lambda)}U^T \cdot x \approx \sum_{k=0}^{K} w_k P^k \cdot x$

Limitations

Lack of adaptability due to the *fixed* polynomial bases

□ Convergence

$$\lim_{K\to\infty} E(G, z^K) = (1-\tau)E(G, x)$$

Over-Squashing

 $|(\partial z_u^k)/(\partial z_v^k)|$ independent of propagation step k.

Experiments

Table 1: Accuracy (%) compared with polynomial filters.

Methods	Cora	Citeseer	Pubmed	Actor	Chameleon	Squirrel
SGC	86.83 ± 1.28	79.65 ± 1.02	87.14 ± 0.90	34.46 ± 0.67	$ 44.81 \pm 1.20$	25.75 ± 1.07
SIGN	87.70 ± 0.69	80.14 ± 0.87	89.09 ± 0.43	41.22 ± 0.96	60.92 ± 1.45	45.59 ± 1.40
ASGC	85.35 ± 0.98	76.52 ± 0.36	84.17 ± 0.24	33.41 ± 0.80	71.38 ± 1.06	57.91 ± 0.89
GPR-GNN	88.54 ± 0.67	80.13 ± 0.84	88.46 ± 0.31	39.91 ± 0.62	67.49 ± 1.38	50.43 ± 1.89
EvenNet	87.77 ± 0.67	78.51 ± 0.63	90.87 ± 0.34	40.36 ± 0.65	67.02 ± 1.77	52.71 ± 0.85
ChebNet	87.32 ± 0.92	79.33 ± 0.57	$\overline{87.82\pm0.24}$	37.42 ± 0.58	59.51 ± 1.25	40.81 ± 0.42
ChebNetII	88.71 ± 0.93	80.53 ± 0.79	88.93 ± 0.29	41.75 ± 1.07	71.37 ± 1.01	57.72 ± 0.59
BernNet	88.51 ± 0.92	80.08 ± 0.75	88.51 ± 0.39	41.71 ± 1.12	68.53 ± 1.68	51.39 ± 0.92
JacobiConv	88.98 ± 0.72	80.78 ± 0.79	89.62 ± 0.41	41.17 ± 0.64	74.20 ± 1.03	57.38 ± 1.25
OptBasisGNN	$\overline{87.00\pm1.55}$	80.58 ± 0.82	90.30 ± 0.19	$\textbf{42.39} \pm \textbf{0.52}$	74.26 ± 0.74	63.62 ± 0.76
Specformer	88.57 ± 1.01	81.49 ± 0.94	87.73 ± 0.58	41.93 ± 1.04	74.72 ± 1.29	64.64 ± 0.81
UniFilter	$\textbf{89.49} \pm \textbf{1.35}$	$\boxed{\textbf{81.39}\pm\textbf{1.32}}$	91.44 ± 0.50	40.84 ± 1.21	$\textbf{75.75} \pm \textbf{1.65}$	$\textbf{67.40} \pm \textbf{1.25}$

 Table 2: Accuracy (%) compared with model-optimized methods.

Methods	Cora	Citeseer	Pubmed	Actor	Chameleon	Squirrel
GCN	86.98 ± 1.27	76.50 ± 1.36	88.42 ± 0.50	27.32 ± 1.10	64.82 ± 2.24	53.43 ± 2.01
GCNII	88.37 ± 1.25	77.33 ± 1.48	90.15 ± 0.43	37.44 ± 1.30	63.86 ± 3.04	38.47 ± 1.58
GAT	$\overline{87.30 \pm 1.10}$	76.55 ± 1.23	$\overline{86.33\pm0.48}$	27.44 ± 0.89	60.26 ± 2.50	40.72 ± 1.55
						40.00 1 1 40

Universal Polynomial Bases

UniFilter	$\textbf{89.12} \pm \textbf{0.87}$	$\textbf{80.28} \pm \textbf{1.31}$	$\textbf{90.19} \pm \textbf{0.41}$	$\textbf{37.79} \pm \textbf{1.11}$	$\textbf{73.66} \pm \textbf{2.44}$	$\textbf{64.26} \pm \textbf{1.46}$
GloGNN++	88.33 ± 1.09	77.22 ± 1.78	89.24 ± 0.39	37.70 ± 1.40	71.21 ± 1.84	57.88 ± 1.76
ACM-GCN	87.91 ± 0.95	77.32 ± 1.70	90.00 ± 0.52	36.28 ± 1.09	66.93 ± 1.85	54.40 ± 1.88
WRGAT	88.20 ± 2.26	76.81 ± 1.89	88.52 ± 0.92	36.53 ± 0.77	65.24 ± 0.87	48.85 ± 0.78
LINKX	84.64 ± 1.13	73.19 ± 0.99	87.86 ± 0.77	36.10 ± 1.55	68.42 ± 1.38	61.81 ± 1.80
H_2GCN	87.87 ± 1.20	77.11 ± 1.57	89.49 ± 0.38	35.70 ± 1.00	60.11 ± 2.15	36.48 ± 1.86
winxitop	07.01 ± 0.05	10.20 ± 1.55	0.01 ± 0.01	32.22 ± 2.34	00.50 ± 2.55	$+3.00 \pm 1.40$

Figure 5: Dirichlet energy $E(\mathbf{G}, \mathbf{X}^k)$ with varying k.

Figure 6: Accuracy (%) with varying k.

ideal signal vector