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 Message Passing in Graph Neural Networks (GNNs)

 Spectral Graph Neural Networks

 Spectral Graph Filters on Graph Signals

𝐿 = 𝐼 − 𝐷−1/2𝐴𝐷−1/2 = 𝑈Λ𝑈𝑇 = 𝑈
𝜆1

…
𝜆𝑛

𝑈𝑇

 Laplacian Matrix on Graph Signals

 Learnable Spectral Graph Filters

 Spectral filter 𝑔𝑤(∙) parameterized by parameter w ∈ 𝑅𝑛

 Challenge

 Time complexity: O(n3)

 Polynomial Approximation

 A graph signal x, an integer K, and propagation matrix P ∈ 𝑅𝑛×𝑛

 Limitations

 Lack of adaptability due to the fixed polynomial bases

 Convergence

Introduction

Universal Polynomial Bases

 Insight One: Frequency proportional property

z = 𝑈𝑔𝑤 Λ 𝑈𝑇 ∙ x ≈ σ𝑘=0
𝐾 𝑤𝑘𝑃

𝑘 ∙ x

 Insight Two: Asymptotical convergence

 Insight Three: Monotonic relationship

 UniBasis & UniFilter

 UniBasis

{x + 𝑢0, 𝑃x + 𝑢1, 𝑃
2x + 𝑢2, … , 𝑃𝐾x + 𝑢𝐾}

 UniFilter

𝑧𝐾 = σ𝑘=0
𝐾 𝑤𝑘(𝜏𝑃

𝑘x + (1 − 𝜏)𝑢𝑘) (𝜏 ∈ [0,1])

 Over-Smoothing

 Over-Squashing

Experiments

𝑔𝑤(𝐿) ∙ x = 𝑈𝑔𝑤(Λ)𝑈
𝑇 ∙ x

𝑔𝑤(Λ) = diag [𝑔𝑤(𝜆1), 𝑔𝑤(𝜆2), … , 𝑔𝑤(𝜆𝑛)]

𝑥
𝑧

𝑦

𝑥

𝑦
proportional to

1 − ℎ

ideal signal vector

𝑥
𝑧

𝜓

ℎ0

ℎ1

ℎ2

𝑦

𝑥

𝑦

𝑧

𝑢1

𝜽 𝑢0

related to

𝑦

𝑥

lim
𝐾→∞

𝐸 𝐺, 𝑧𝐾 = (1 − τ)𝐸 𝐺, x

ൗ|(𝜕𝑧𝑢
𝑘) 𝜕𝑧𝑣

𝑘 | independent of propagation step 𝑘.


