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Context & Motivation

The study of training dynamics of single-index multi-index models of Gaus-
sian data has been developed recently, leading to the following highlighted
results:
• For single-index models, the sample complexity of one-pass SGD is

determined by the first non-zero Hermite coefficient of the target, also
known as the information exponent ℓ [1];

• multi-index model present a richer behavior in terms of possible
dynamics, but the leap exponent is determing the sample complexity for
escaping the initialization;

• [2] showed that batch sizes nb ∼ dℓ can improve the number of time
steps needed to recover hidden directions up to costant Od(1).

Aim: Studying the effect of large batch size in terms of gradient steps
needed to recover the target.

Setting
The exact model we are going to study is the following:
• Input data is generated from independent Gaussian distributions:

z ∼ N (0, Id)
Labels are generated by

y = f ⋆(z) +
√

∆ξ = h⋆(W ⋆z) +
√

∆ξ

where ∆ is the artificial noise.
• We are training a two-layer network with square activations:

f (z) = 1
p

p∑
j=1

ajσ(⟨z, wj⟩)

• In most of the cases we are using the square loss function

ℓ(yν, f (zν)) = 1
2
(yν − f (zν))2,

or whe specified the correlation loss function
ℓ(yν, f (zν)) = 1 − yνf (zν).

• We the projected online SGD with batch-size nb:

gj = 1
nb

nb∑
ν=1

∇wj
ℓ(yν, f (zν)) wj,t+1 = wj,t − γgj∥∥wj,t − γgj

∥∥
meaning that the samples in a batch are used for one single gradient step,
and discarded after that.

High dimensional limit

We study the limit where the data dimension is going to infity d → +∞.
Together with the dimension, we also scale:
• the learning rate γ = γ0d

−δ

• the batch-size nb = n0d
µ

The learning in high-dimensions has happened when the network has weakly
recovered the target directions, namely the correlation between student and
teacher weights is distinguashable from random initialization. The recovery
time is

T = min{t ≥ 0 : ∥WtW
⋆⊤∥F≥ η}

for a fixed parameter η ∈ (0, 1) independent from d.
We fully characterize the SGD ability to correlate with the

target in terms of µ and δ.
Also the weak recovery time scales with the dimension T ∝ dθ.

Time / Batch size Phase diagram
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ℓ = min{k ∈ N : Ex∼N (0,1)[h⋆(x)Hk(x)] ̸= 0}.

The extension to multi-index models introduces an exponent for each target
direction. It is referred as the leap exponent or leap index.

Intuition Using larger batch size reduces the noise in the gradient estimation,
ultimately allowing to increase the learning rate and hence the speed of
learning.
Results The sample complexity is given by

N = nb · T ∝ dθ+δ.

The phase diagram tells us that:
• All the result are up to a log d factor.
• The batch size does not affect the time complexity of the learning:

N = dℓ−1.
• There is a tradeoff between time (number of steps̃learning rate) and

memory (number of samples per batch): Having more computational
resources allows to use larger batch sizes, and learn faster.

Projected SGD

• There exists a critical number of time-steps that cannot be reduced by
increasing the batch size at T = O

(
d

ℓ
2−1
)

. This corresponds to the
transition from vanishing to Od(1) learning rate.

• There exists an optimal batch size that is the smallest one that
allows to reach the critical time:

nb = d
ℓ
2.

Correlation Loss SGD

Motivation When the learning scale is non-vanishing projected algorithms
fail to remain local: the gradient component aligned with student weights,
combined with normalization makes the algorithm unstable if doing big
jumps.
• The time can be pushed down to T = Od(1) by increasing the batch

size.
• There exists another optimal point batch size

nb = dℓ−1.

• The one (giant) step regime(T = 1) can be reached when using a
sufficiently large batch size and learning rate [2].

Batch-size / Learning rate phase diagram (ℓ ≥ 2)
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It behaves like the correlation loss,
but with different coefficients.

Exact Low-dimensional Asymptotic dynamics

We track the evolution of covariance of pre-activations:

Ωt :=

(
Qt Mt

M⊤
t P

)
=

(
WtWt

⊤ WtW
⋆⊤

W ⋆W ⊤
t W ⋆W ⋆⊤

)
Theorem (Informal)

The Projected SGD dynamics of the covariance matrix is approximated in
the limit d → +∞ by the following differential equation:

dM

dt
= Ψ(Ω; δ, µ)

dQ

dt
= Φ(Ω; δ, µ)

where Ψ and Φ have the same form as the case µ = 0 [3].

The result is once again summarized by a phase diagram in the µ−δ plane.
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Non-asymptotic corrections

The presence of intra-batch interaction vanishes in the
limit d → +∞, but it plays a role when d is finite.

100 101

t = ν∆t

10−9

10−7

10−5

10−3

10−1

T
es

t
er

ro
r

(d
iff

er
en

ce
w

it
h

as
ym

p
to

ti
c

th
eo

ry
) Simulation d = 50

Process d = 50

Simulation d = 100

Process d = 100

Simulation d = 500

Process d = 500

Simulation d = 1000

Process d = 1000

References

[1] On the sample complexity of learning generalized linear models with
one-pass stochastic gradient descent, Gérard Ben Arous, Reza Gheissari,
Aukosh Jagannath. The Journal of Machine Learning Research, Volume
22, Issue 1, 2021.

[2] Learning two-layer neural networks, one (giant) step at a time, Yatin
Dandi, Florent Krzakala, Bruno Loureiro, Luca Pesce, Ludovic Stephan.
arXiv preprint arXiv:2305.18270

[3] Phase diagram of Stochastic Gradient Descent in high-dimensional
two-layer neural networks Rodrigo Veiga, Ludovic Stephan, Bruno
Loureiro, Florent Krzakala, Lenka Zdeborová. Advances in Neural
Information Processing Systems 35, 2022.


