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Time / Batch size Phase diagram

Context & Motivation Exact Low-dimensional Asymptotic dynamics

sian data has been developed recently, leading to the following highlighted
results: i ! ° ST -1 SGD L : 0, — Qr M, _ WtWtT VVH/V*T
e For single-ind dels, th | lexity of SGD i Sarnine : M P Wewe W
or single-index models, the sample complexity of one-pass is : :
determined by the first non-zero Hermite coefficient of the target, also Correlation Loss SGD Iearnmg Theorem (Informal)
known as the information exponent ¢ [1]; SGD Not Learning
. . . . B The Projected SGD dynamics of the covariance matrix is approximated in
e multi-index model present a richer behavior in terms of possible E - defined . . . . .
. . . . 3 Xpansion not derine the limit d — 400 by the following differential equation:
dynamics, but the leap exponent is determing the sample complexity for o0 _ Y
escaping the initialization; = mmm Polylog regime — = W(Q; 0, )
e [2] showed that batch sizes 1, ~ d' can improve the number of time | memmm Opne Step regime gé
steps needed to recover hidden directions up to costant Oy(1). N y 5 = _ ity b 4 P D(82; 0, p)
: . . . L2 = EXpansion validity boundar
Aim: Studying the effect of large batch size in terms of gradient steps 2 4 P Y Y where U and ® have the same form as the case 1 = 0 [3].
needed to recover the target. ¢ q SGD Optimal Point
5 — 17 The result is once again summarized by a phase diagram in the ;1 — 0 plane.
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Setting
The exact model we are going to study is the following: 0 *—*—
e |nput data is generated from independent Gaussian distributions: 0 g ¢/ —1 !/ ;‘;?S‘;'jzzr;ﬂ;w
>~ _/\/‘(()7 [d> Dynamics not defined
Information Exponent T Sdd &Sl
Labels are generated by P Motivation When the learning scale is non-vanishing projected algorithms
y=f"(z)+ VAE = h*(W*z) + VAE fail to remain local: the gradient component aligned with student weights,
where A is the artificial noise. ¢ =min{k € N : ExNN(O,l)[h*<CE)Hk(33>] #+ 0}. .combined with normalization makes the algorithm unstable if doing big
. . C . jumps.
e We are training a two-layer network with square activations: The extension to multi-index models introduces an exponent for each target _ | |
p L . . e The time can be pushed down to T' = Oy4(1) by increasing the batch
1 direction. It is referred as the leap exponent or leap index. _
F2) = 1Y wol(z o)
P e There exists another optimal point batch size
® In most of the cases we are using the square loss function Intuition Using larger batch size reduces the noise in the gradient estimation, ny = Pty

0y, F(2") = 1<yy ) :Jltim.ately allowing to increase the learning rate and hence the speed of e The one (giant) step regime(T — 1) can be reached when using 2 . . . . .
3 _ 2 . earning. o sufficiently large batch size and learning rate [2] The presence of intra-batch interaction  vanishes in | the
or whe specified the correlation loss function Results The sample complexity is given by imit d — +oo, but it plays a role when d is finite.
0y", f(27) =1 =y f(="). N =ny- T ocd’™. : : : Simulation d = 50
e \We the projected online SGD with batch-size ny: The phase diagram tells us that: Batch-size / Learning rate phase diagram (Z > 2) %‘\ 107 1 Process d = 50
ny S Simulation d = 100
o 1 Vo 05" F(2) o W, — Vg, e All the result are up to a log d factor. L Process d — 100
97 ny ; wt\Y G ij,t - yng e The batch size does not affect the time complexity of the learning: / S )3 - Simulation d = 500
meaning that the samples in a batch are used for one single gradient step, N =d™". . : E :ir:jziijn d5£01000
and discarded after that. ® There is a tradeoff between time (number of stepslearning rate) and = Process d = 1000
memory (number of samples per batch): Having more computational & 107" 1
resources allows to use larger batch sizes, and learn faster. — 52_)
High dimensional limit %S 2
Projected SGD m 1 g 1077+
We study the limit where the data dimension is going to infity d — +o0. [ 0 E
Together with the dimension, we also scale: e There exists a critical number of time-steps that cannot be reduced by < 109
o the learning rate v = d° increasing the batch size at 7' = O (dg_l). This corresponds to the 1_ ¢ 107
e the batch-size n;, = ngd" transition from vanishing to O4(1) learning rate. ’
The learning in high-dimensions has happened when the network has weakly e There exists an optimal batch size that is the smallest one that _f=1
recovered the target directions, namely the correlation between student and allows to reach the critical time: : | | | | References
teacher weights is distinguashable from random initialization. The recovery ny = ds. L f—1p_1 ¥
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