

Federated Self-Explaining GNNs with Anti-shortcut Augmentations

Linan Yue¹ Qi Liu*^{1 2} Weibo Gao¹ Ye Liu¹ Kai Zhang¹ Yichao Du¹ Li Wang³ Fangzhou Yao¹

1: State Key Laboratory of Cognitive Intelligence,
University of Science and Technology of China

2: Institute of Artificial Intelligence, Hefei Comprehensive National Science Center Hefei, China

3: ByteDance

Presented by : Linan Yue

lnyue@mail.ustc.edu.cn

Outline

1

Background of Graph Rationalization

2

Anti-shortcut Augmentations for FedGR

3

Experiments of FedGR

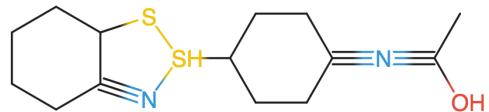
Background

Background

➤ Graph Rationalization

- Graph Neural Networks (GNNs) have become ubiquitous in graph classification tasks, demonstrating remarkable performance.
- Graph rationalization— *How to provide explanations for GNNs?*

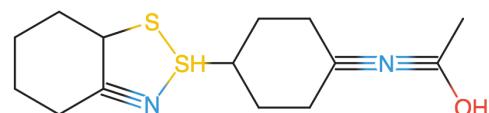
Graph classification:



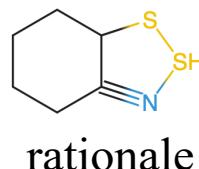
predict

Whether the compound is active against HIV?

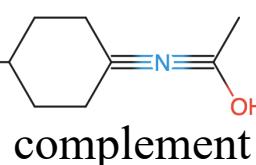
Graph rationalization:



select



predict



Whether the compound is active against HIV?

complement

[only for example]

Background

Graph Rationalization

➤ Problems of Graph Rationalization -- Low Faithfulness

- It is easy to exploit spurious correlations (aka., shortcuts) to yield the prediction results and compose the rationales.

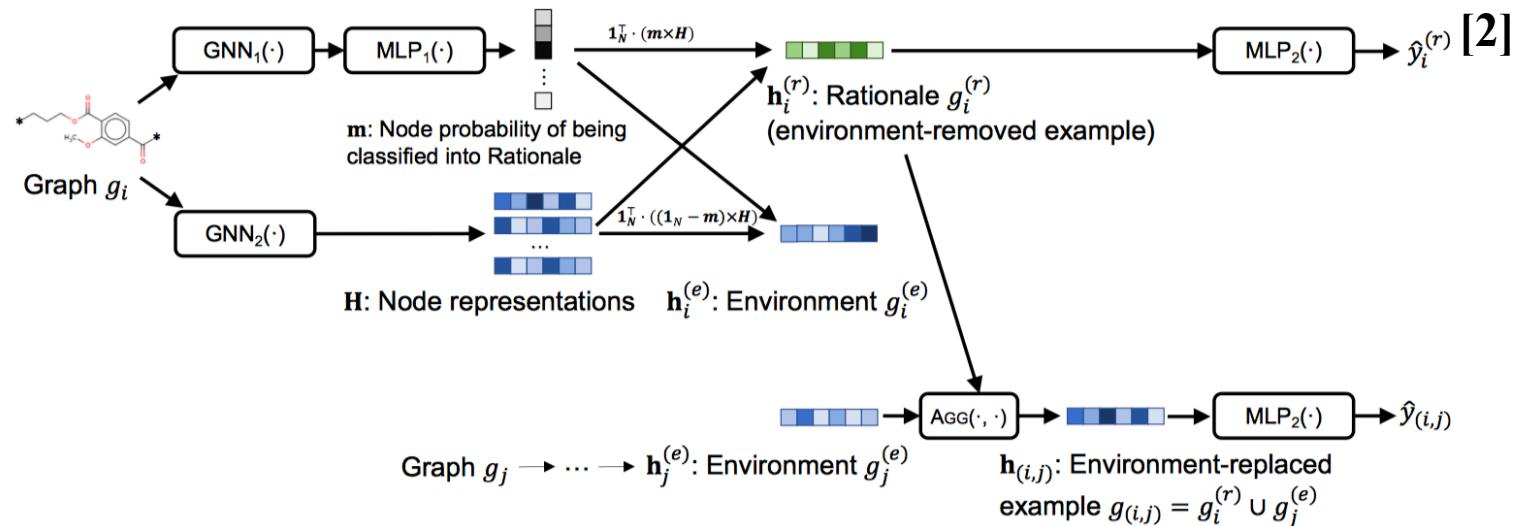
[1] Xiang Deng, Xiang Deng, Comprehensive Knowledge Distillation with Causal Intervention. NeurIPS2021

Background

Existing Problems

➤ How to solve the shortcut problem?

- By generating multiple samples that deviate from the existing distribution, these models alleviate employing shortcuts to make predictions within the current data distribution
- Numerous de-shortcut rationalization methods are designed mitigate the shortcut problem.



[2] Gang Liu et.al. Graph Rationalization with Environment-based Augmentations. KDD2022.

Background

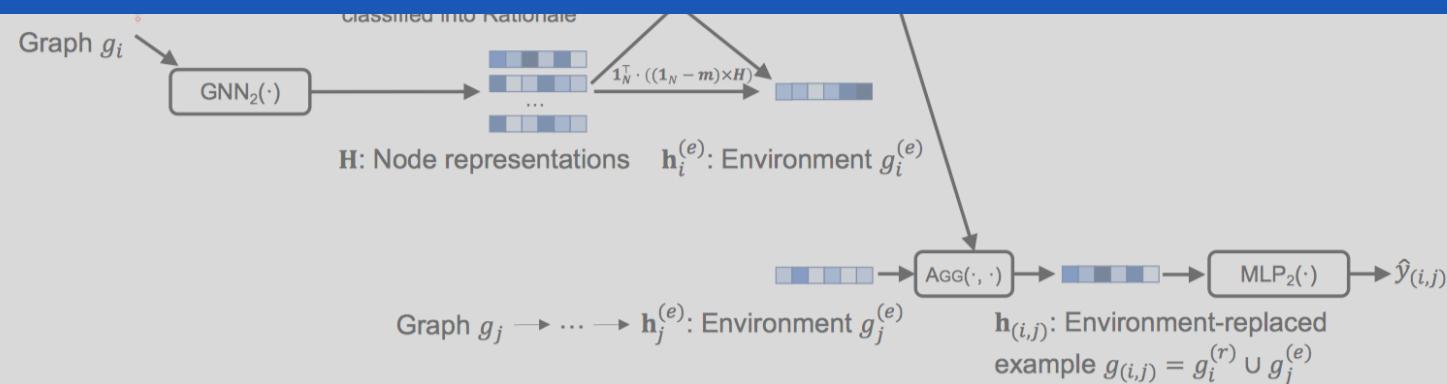
Existing Problems

➤ How to solve the shortcut problem?

- By generating multiple samples that deviate from the existing distribution, these models will learn to distinguish the distribution of the generated samples from the original distribution.

All methods are designed in **centralized datasets**.

Rationalizations have not been extensively explored in **Federated Learning (FL) scenarios**.

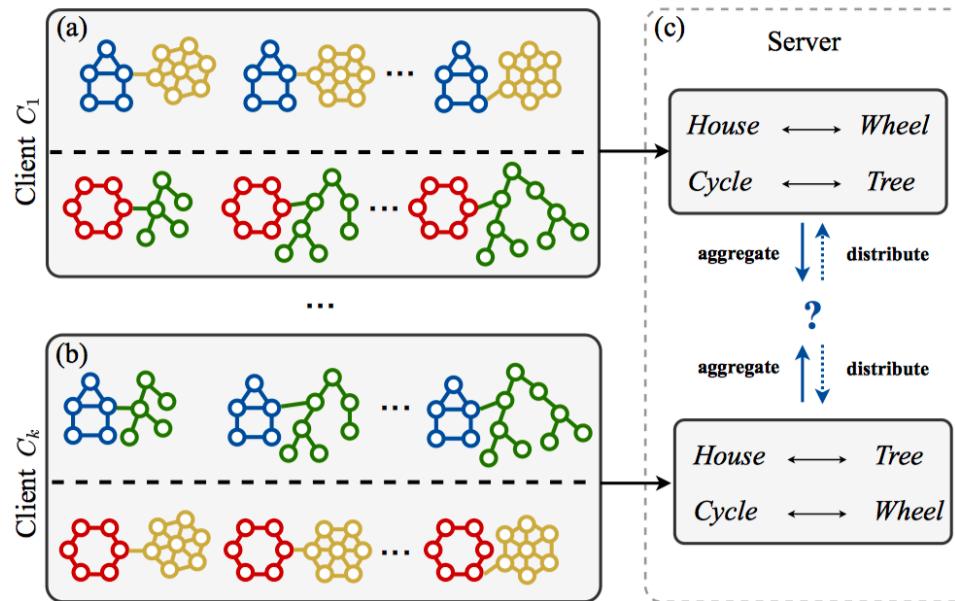


[2] Gang Liu et.al. Graph Rationalization with Environment-based Augmentations. KDD2022.

Background

Existing Problems

- **The shortcut problem in Graph rationalization under FL scenarios**
 - Different clients tend to employ *client-specific shortcuts* for prediction.



Each client has its own data distributions (i.e., the shortcuts).

Outline

1

Background of Graph Rationalization

2

Anti-shortcut Augmentations for FedGR

3

Experiments of FedGR

Anti-shortcut Augmentations for FedGR

FedGR

➤ Vanilla Graph Rationalization

We present the detail of the vanilla graph rationalization in the general scenario.

Selector in Graph Rationalization.

$$\tilde{\mathbf{M}} = \text{softmax} (W_m (\text{GNN}_m (G)))$$

sample

$$m_i = \frac{\exp ((\log (\tilde{m}_i) + q_i) / \tau)}{\sum_t \exp ((\log (\tilde{m}_t) + q_t) / \tau)}$$

Predictor in Graph Rationalization.

Rationale: $\mathbf{h}_r = \text{READOUT}(\mathbf{M} \odot \mathbf{H}_G)$,

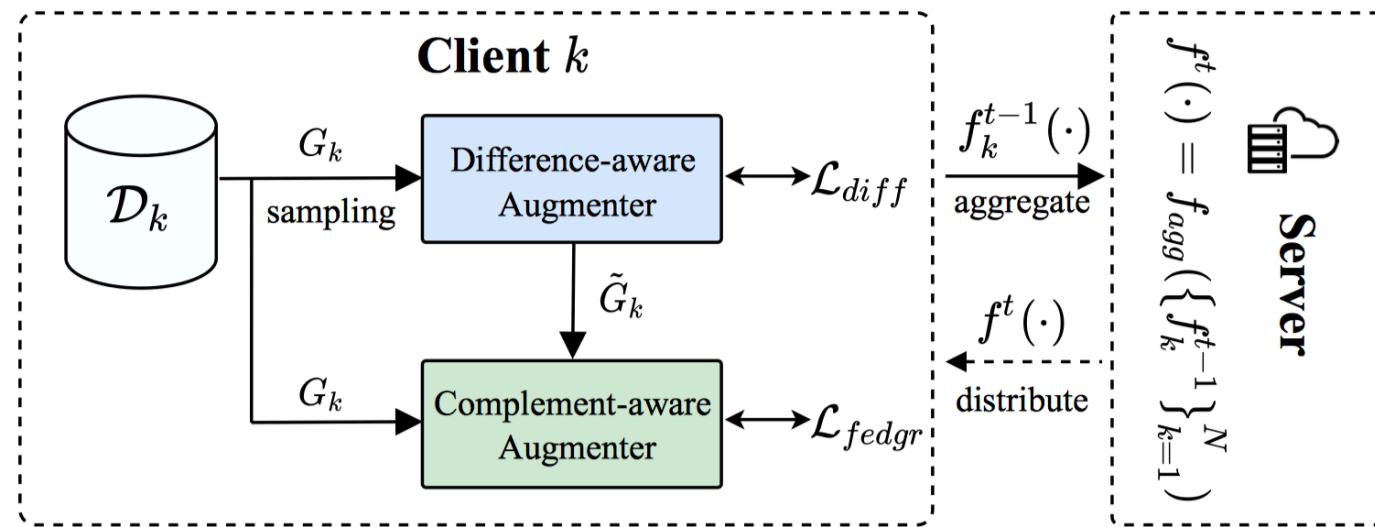
Complement: $\mathbf{h}_e = \text{READOUT}((1 - \mathbf{M}) \odot \mathbf{H}_G)$

$$\hat{Y}_r = \Phi (\mathbf{h}_r), \quad \mathcal{L}_r = \mathbb{E}_{(G, Y) \sim \mathcal{D}} [\ell(\hat{Y}_r, Y)]$$

Anti-shortcut Augmentations for FedGR

FedGR

➤ Framework of Federated Graph Rationalization



Anti-shortcut Augmentations:

- ① Complement-aware Augmenter
- ② Difference-aware Augmenter

Anti-shortcut Augmentations for FedGR

FedGR

➤ Complement-aware Augmenter

- Based on the sufficiency and independence [3][4] of the rationalization method, for each client, we design a complement-aware augmenter to enhance the diversity of local data distributions.

Definition 3.1. Sufficiency Principle for Rationalization:

$$P(Y | G) = P(Y | R),$$

Definition 3.2. Independence Principle for Rationalization:

$$Y \perp\!\!\!\perp E | R,$$

The objective to compose invariant rationales:

$$P(Y | G) = P(Y | R) \quad \text{s.t. } Y \perp\!\!\!\perp E | R.$$

Employ the contrastive constraint to achieve:

$$\mathcal{L}_c = -\log \frac{\exp(\mathbf{h}_r^\top \mathbf{h}_g / \tau)}{\exp(\mathbf{h}_r^\top \mathbf{h}_g / \tau) + \sum_{\mathbf{h}_e \in \mathcal{E}} \exp(\mathbf{h}_r^\top \mathbf{h}_e / \tau)},$$

[3] DeYoung, J et al., ERASER: A benchmark to evaluate rationalized NLP models. ACL2020.

[4] Li, S et al., Let invariant rationale discovery inspire graph contrastive learning. ICML2022

Anti-shortcut Augmentations for FedGR

FedGR

➤ Implementation of Complement-aware Augmenter

- After satisfying the sufficiency and independence principles, we can pull R and G closer together while pushing R and E, E and Y apart. Then, we derive the following equation:

$$P(Y|G) = P(Y|R) = P(Y|R, E) = P(Y|R, \hat{E})$$

Data Augmentation

- Data Augmentation:

$$\mathbf{h}_{\tilde{g}_k}^{(i,j)} = \mathbf{h}_{r_k}^i + \mathbf{h}_{e_k}^j$$

$$\hat{Y}_k^{(i,j)} = \Phi \left(\mathbf{h}_{\tilde{g}_k}^{(i,j)} \right), \mathcal{L}_e = \mathbb{E}_{(G_k^i, Y_k^i) \sim \mathcal{D}_k} \left[\ell(\hat{Y}_k^{(i,j)}, \tilde{Y}_k^{(i,j)}) \right]$$

Anti-shortcut Augmentations for FedGR

FedGR

➤ Difference-aware Augmenter

Assumption 3.3. In the FL scenario, given the global server model $f^t(\cdot)$ and the local model $f_k^{t-1}(\cdot)$ generated in the previous iteration, we assume that $f^t(\cdot)$ exhibits a relatively unbiased nature in comparison to $f_k^{t-1}(\cdot)$ [5]

Condition 3.4. Given the bias model $f_k^{t-1}(\cdot)$, the generated sample \tilde{G}_k and the label Y_k are independent:

$$Y_k \perp\!\!\!\perp \tilde{G}_k \mid f_k^{t-1}(\cdot).$$

Condition 3.5. Given the unbiased model $f^t(\cdot)$, the generated sample \tilde{G}_k and the label Y_k are dependent:

$$Y_k \not\perp\!\!\!\perp \tilde{G}_k \mid f^t(\cdot).$$

[5] Xu, Y, et al. Bias-eliminating augmentation learning for debiased federated learning. CVPR2023,

$$\max I(Y_k; \tilde{G}_k \mid f^t(\cdot)) \text{ s.t. } I(Y_k; \tilde{G}_k \mid f_k^{t-1}(\cdot)) \leq I_c$$

Theorem 3.6. To train the difference-aware augmenter, minimizing term ① in Eq(9) contributes to $\max I(Y_k; \tilde{G}_k \mid f^t(\cdot))$; maximizing term ② in Eq(9) contributes to $\min I(Y_k; \tilde{G}_k \mid f_k^{t-1}(\cdot))$.

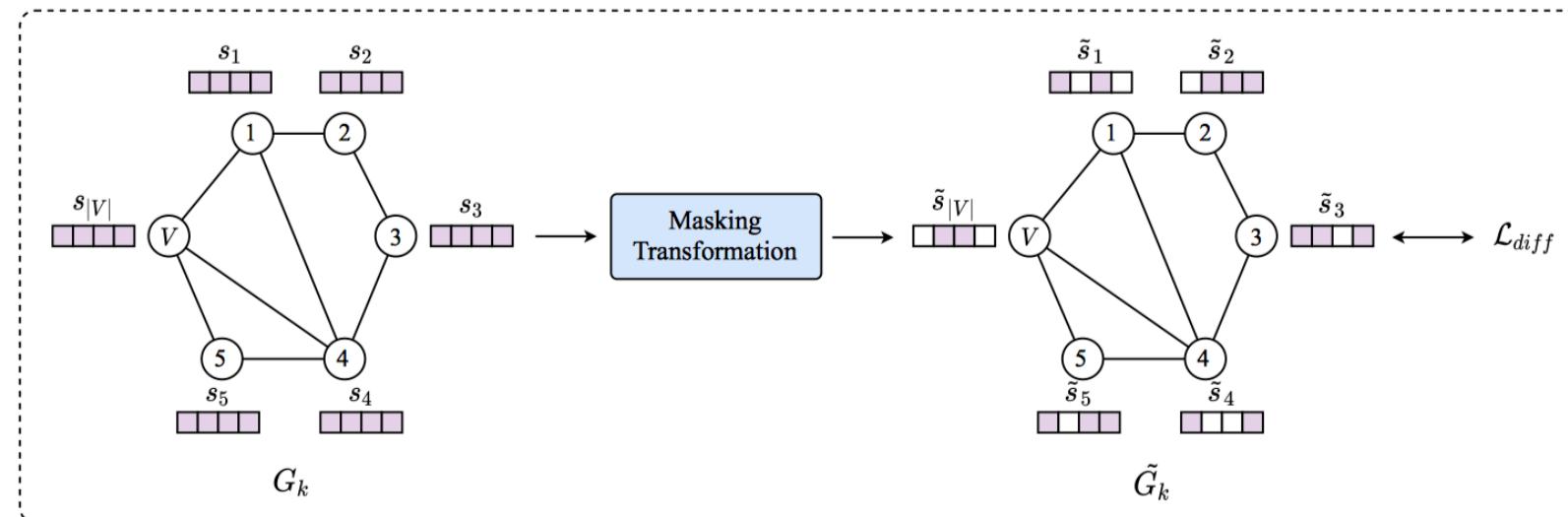
$$\begin{aligned} \min_{\Psi} \mathcal{L}_{diff} = \\ \min_{\Psi} \underbrace{[\ell(f^t(\Psi(G_k)), Y_k) - \beta \ell(f_k^{t-1}(\Psi(G_k)), Y_k)]}_{\textcircled{1}} \end{aligned}$$

Anti-shortcut Augmentations for FedGR

FedGR

➤ Implementation of Difference-aware Augmenter

- Consider the complexity of the graph structure, we do not perturb the *edges* of the graph.
- For simplicity, we employ a masking transformation on the *node features* of the graph to generate the new graph.



Outline

1

Background of Graph Rationalization

2

Anti-shortcut Augmentations for FedGR

3

Experiments of FedGR

Experiments

Rationale evaluation

- **RQ1: How effective is FedGR in improving task prediction?**
- **RQ2: How well does the complement-aware augmenter mitigate the shortcut problem?**
- **RQ3: Can the framework of FedGR with the difference-aware augmenter contribute to the performance improvement in existing de-shortcut rationalization methods?**
- **RQ4: How FedGR scales with an increasing number of clients?**

Experiments

Rationale evaluation

➤ Overall Performance (RQ1)

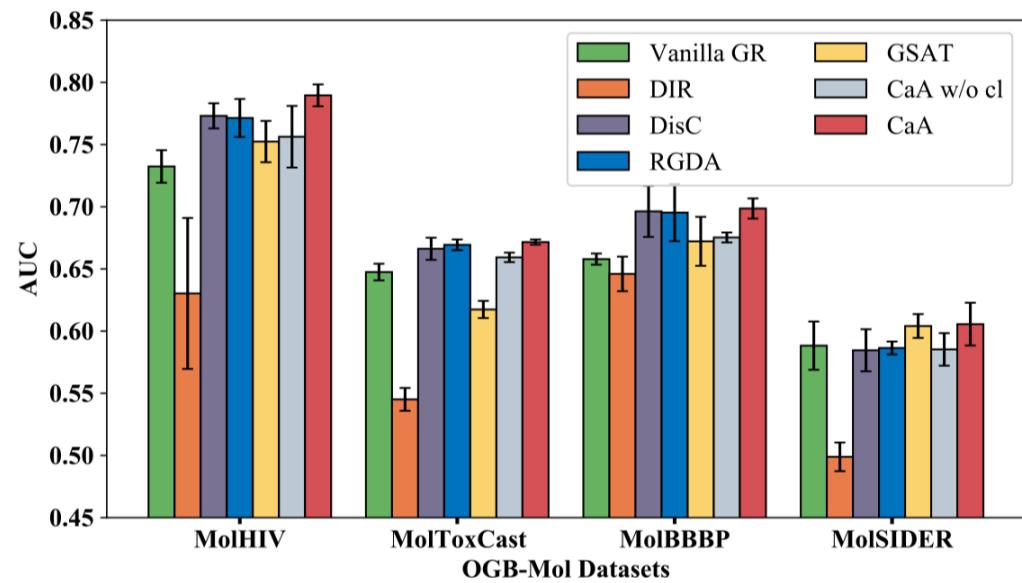
Table 1. Performance on the Synthetic Dataset and Real-world Dataset with the GIN backbone. More experimental results about FedGR implemented with the GCN backbone are shown in Appendix E.1.

	Spurious-Motif (ACC)			OGB (AUC)			
	bias=0.5	bias=0.7	bias=0.9	MolHIV	MolToxCast	MolBBBP	MolSIDER
GIN	0.3213 \pm 0.0429	0.3489 \pm 0.0442	0.2978 \pm 0.0382	0.6927 \pm 0.0308	0.6091 \pm 0.0133	0.6226 \pm 0.0133	0.5780 \pm 0.0105
Vanilla GR	0.3182 \pm 0.0353	0.3681 \pm 0.0359	0.3031 \pm 0.0291	0.6985 \pm 0.0155	0.6111 \pm 0.0055	0.6339 \pm 0.0142	0.5774 \pm 0.0175
DIR	0.3091 \pm 0.0314	0.3298 \pm 0.0148	0.2893 \pm 0.0311	0.6731 \pm 0.0337	0.6133 \pm 0.0064	0.6245 \pm 0.0098	0.5686 \pm 0.0162
DisC	0.4418 \pm 0.0182	0.4481 \pm 0.0381	0.3579 \pm 0.0471	0.7212 \pm 0.0201	0.6274 \pm 0.0018	0.6561 \pm 0.0121	0.5869 \pm 0.0142
CAL	0.4213 \pm 0.0109	0.5289 \pm 0.0087	0.4191 \pm 0.0248	0.7039 \pm 0.0113	0.6170 \pm 0.0051	0.6575 \pm 0.0076	0.5879 \pm 0.0138
GSAT	0.4281 \pm 0.0328	0.5259 \pm 0.0381	0.4194 \pm 0.0338	0.7149 \pm 0.0226	0.6255 \pm 0.0030	0.6555 \pm 0.0085	0.5952 \pm 0.0082
DARE	0.4483 \pm 0.0193	0.4891 \pm 0.0391	0.4288 \pm 0.0977	0.7220 \pm 0.0165	0.6289 \pm 0.0059	0.6621 \pm 0.0096	0.5886 \pm 0.0113
InterRAT	0.4191 \pm 0.0943	0.5283 \pm 0.0935	0.4281 \pm 0.0189	0.7026 \pm 0.0092	0.6095 \pm 0.0028	0.6426 \pm 0.0223	0.5842 \pm 0.0078
RGDA	0.4087 \pm 0.0293	0.5089 \pm 0.0198	0.4286 \pm 0.0313	0.7246 \pm 0.0085	0.6235 \pm 0.0034	0.6605 \pm 0.0157	0.5906 \pm 0.0151
FedGR	0.4610 \pm 0.0289	0.5538 \pm 0.0398	0.4977 \pm 0.0315	0.7387 \pm 0.0186	0.6316 \pm 0.0054	0.6690 \pm 0.0174	0.6017 \pm 0.0202
FedGR w/o diff	0.4493 \pm 0.0238	0.5293 \pm 0.0483	0.4333 \pm 0.0471	0.7214 \pm 0.0124	0.6222 \pm 0.0055	0.6623 \pm 0.0033	0.5886 \pm 0.0047
FedGR w/o com	0.4571 \pm 0.0372	0.5438 \pm 0.0551	0.4682 \pm 0.0388	0.7321 \pm 0.0233	0.6298 \pm 0.0035	0.6668 \pm 0.0048	0.5978 \pm 0.0021

Experiments

Rationale evaluation

- Performance of Complement-aware augmenter in centralized scenarios (RQ2)



- Generalizability of FedGR (RQ3)

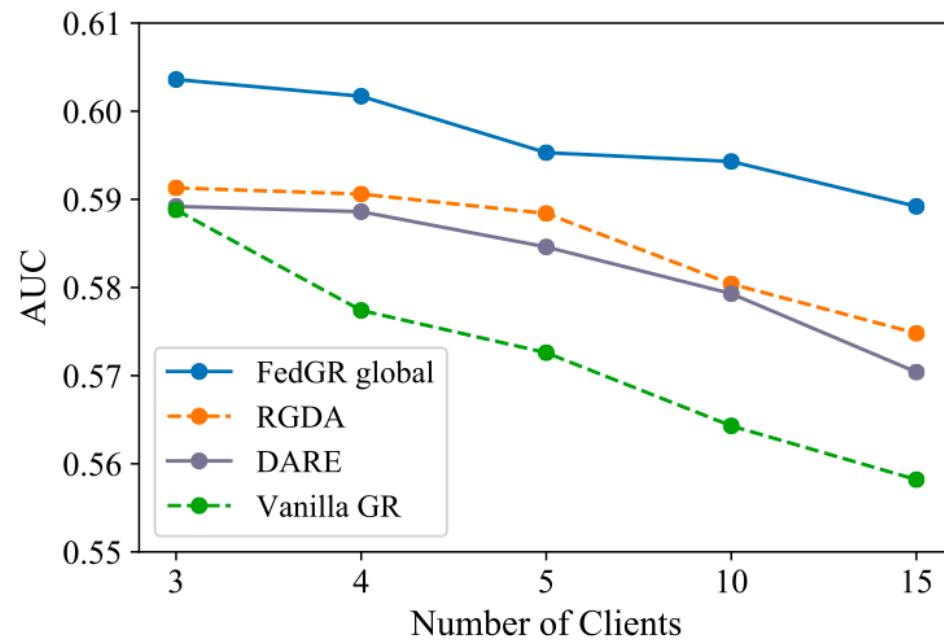
Table 2. Structural Generalizability of FedGR with the GIN backbone. Each rationalization method in FedGR is highlighted in gray.

	MolHIV	MolToxCast	MolBBBP	MolSIDER
DisC	0.7212	0.6274	0.6561	0.5869
DisC+FedGR	0.7313 (↑1.01%)	0.6301 (↑0.27%)	0.6618 (↑0.57%)	0.5942 (↑0.73%)
RGDA	0.7246	0.6235	0.6605	0.5906
RGDA+FedGR	0.7344 (↑0.98%)	0.6326 (↑0.91%)	0.6673 (↑0.68%)	0.6008 (↑1.02%)
GSAT	0.7149	0.6255	0.6555	0.5952
GSAT+FedGR	0.7267 (↑1.18%)	0.6293 (↑0.38%)	0.6628 (↑0.73%)	0.5980 (↑0.28%)
InterRAT	0.7026	0.6095	0.6426	0.5842
InterRAT+FedGR	0.7193 (↑1.67%)	0.6245 (↑1.50%)	0.6587 (↑1.61%)	0.5927 (↑0.85%)
DARE	0.7220	0.6289	0.6621	0.5886
DARE+FedGR	0.7291 (↑0.71%)	0.6331 (↑0.42%)	0.6686 (↑0.65%)	0.5945 (↑0.59%)

Experiments

Rationale evaluation

➤ Scalability of FedGR (RQ4)



The Forty-first
International Conference
on Machine Learning

认知智能全国重点实验室
STATE KEY LABORATORY OF COGNITIVE INTELLIGENCE

Thank you !