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1 Background
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» Graph Rationalization

* Graph Neural Networks (GNNs) have become ubiquitous in graph
classification tasks, demonstrating remarkable performance.

* Graph rationalization— How to provide explanations for GNNs?
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il Background

R Graph Rationalization -~

» Problems of Graph Rationalization -- Low Faithfulness

* Itis easy to exploit spurious correlations (aka., shortcuts) to yield the prediction results and
compose the rationales.
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[1] Xiang Deng, Xiang Deng, Comprehensive Knowledge Distillation with Causal Intervention.NeurIPS2021
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1 Background

e RnnEE L e TR TEs Existing Problems

» How to solve the shortcut problem?
. * By generating multiple samples that deviate from the existing distribution, these models
alleviate employing shortcuts to make predictions within the current data distribution
* Numerous de-shortcut rationalization methods are designed mitigate the shortcut problem.
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[2] Gang Liu et.al. Graph Rationalization with Environment-based Augmentations. KDD2022.

State Key Laboratory of Cognitive Intelligence, University of Science and Technology of China



1 Background

B Existing Problems

»> How to solve the shortcut problem?
. * By generating multiple samples that deviate from the existing distribution, these models

All methods are designed in centralized datasets.
Rationalizations have not been extensively explored in Federated Learning (FL) scenarios.
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[2] Gang Liu et.al. Graph Rationalization with Environment-based Augmentations. KDD2022.
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» The shortcut problem in Graph rationalization under FL scenarios
. » Different clients tend to employ client-specific shortcuts for prediction.
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th Anti-shortcut Augmentations for FedGR
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» Vanilla Graph Rationalization
’ We present the detail of the vanilla graph rationalization in the general scenario.

Selector in Graph Rationalization.
sample

- . P _ exp ((log () + ;) [T)
M = softmax (W,,, (GNN,,(G))) m; Zt exp ((log (772g) + q) /7)

Predictor in Graph Rationalization.

Rationale: h, = READOUT(M 0 Hg),
Complement: h, = READOUT((1-M) o Hg)

}A/r = (hr) ) Er = E(G,Y)~D I:K(Yr) Y):I
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» Framework of Federated Graph Rationalization
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th Anti-shortcut Augmentations for FedGR

e FedGR
© » Complement-aware Augmenter

* Based on the sufficiency and independence [3][4] of the rationalization method, for each client, we
design a complement-aware augmenter to enhance the diversity of local data distributions.
Definition 3.1. Sufficiency Principle for Rationalization:

P(Y | G) = P(Y | R),
Definition 3.2. Independence Principle for Rationalization:
Y I F|R,
The objective to compose invariant rationales:
PlY|G)=P(Y|R) stY Il E|R.
Employ the contrastive constraint to achieve:
-
exp (hr h,/ ’r)
T ’
exp (h,. hg/’r) + Zheeg exp (h,,The/T)

[3] DeYoung, J et al., ERASER: A benchmark to evaluate rationalized NLP models. ACL2020.
[4] L1, S et al., Let invariant rationale discovery inspire graph contrastive learning. [CML2022
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» Implementation of Complement-aware Augmenter

« After satisfying the sufficiency and independence principles, we can pull R and G closer together
while pushing R and E, E and Y apart. Then, we derive the following equation:

P(Y|G) = P(Y|R) = P(Y|R,E) = P(Y|R, E)

. Data Augmentation
* Data Augmentation:

(4,5) _ 1.i j
hgk = h,,ﬂ,(c + hek
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» Difference-aware Augmenter

Assumptlon3 3. In the FL scenarlo glven the global server Ry LA ptly
model f°(-) and the local model fk (. ) generated in the max I (Yi; Gelf(+)) st I(Ye; Gelfy (+)) < L

previous iteration, we assume that f ( ) exh1b1ts a relativelv
unbiased nature in comparison to fk ( ) [5

. . . b1 Theorem 3.6. 7o train the difference-aware aug-
Condition 3.4. Given the bias model fj, " (-), the generated menter, mlnlmlzzng term () in Eq(9) contributes to

sample GG, and the label Y, are independent: max I(Yy; G| 7 (+)); maxzmzzzng term @ in Eq(9) con-
~ i1 tributes to min I (Yy; Gi| fr ( ).
Vi LGi | fi (4)

Condition 3.5. Given the unbias model f “(+), the gener- m\gn Laiss =
ated sample GG, and the label Y}, are dependent: : _
P SRR min[£(f*(¥(G)), Ye) = B (¥(GR)), Yi)]
Y & Gy | f(0). D >

[5] Xu, Y, et al.Bias-eliminating augmentation learning for debiased federated learning. CVPR2023,
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» Implementation of Difference-aware Augmenter

* Consider the complexity of the graph structure, we do not perturb the edges of the graph. ,
* For simplicity, we employ a masking transformation on the node features of the graph to generate the
new graph. '
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1 Experiments

e Rationale evaluation - oo

» RQ1: How effective is FedGR in improving task prediction?

» RQ2: How well does the complement-aware augmenter mitigate
the shortcut problem?

» RQ3: Can the framework of FedGR with the difference-aware
augmenter contribute to the performance improvement in
existing de-shortcut rationalization methods?

» RQ4: How FedGR scales with an increasing number of clients?
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1 Experiments

B Rationale evaluation

» Overall Performance (RQ1)

Table 1. Performance on the Synthetic Dataset and Real-world Dataset with the GIN backbone. More experimental results about FedGR
implemented with the GCN backbone are shown in Appendix E.1.
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Spurious-Motif (ACC) OGB (AUC) !
i bias=0.5 bias=0.7 bias=0.9 MolHIV MolToxCast MolBBBP MolISIDER :
GIN 0.3213 £ 0.0429 0.3489 + 0.0442 0.2978 + 0.0382 | 0.6927 + 0.0308 0.6091 + 0.0133 0.6226 + 0.0133 0.5780 + 0.0105
Vanilla GR 0.3182 £ 0.0353 0.3681 + 0.0359 0.3031 + 0.0291 | 0.6985 + 0.0155 0.6111 + 0.0055 0.6339 + 0.0142 0.5774 + 0.0175 |
DIR 0.3091 £ 0.0314 0.3298 + 0.0148 0.2893 + 0.0311 | 0.6731 + 0.0337 0.6133 + 0.0064 0.6245 + 0.0098 0.5686 *+ 0.0162
| DisC 0.4418 £ 0.0182 0.4481 + 0.0381 0.3579 + 0.0471 | 0.7212 + 0.0201 0.6274 + 0.0018 0.6561 + 0.0121 0.5869 + 0.0142
CAL 0.4213 £ 0.0109 0.5289 + 0.0087 0.4191 + 0.0248 | 0.7039 + 0.0113 0.6170 + 0.0051 0.6575 + 0.0076 0.5879 + 0.0138
GSAT 0.4281 £+ 0.0328 0.5259 + 0.0381 0.4194 + 0.0338 | 0.7149 + 0.0226 0.6255 + 0.0030 0.6555 + 0.0085 0.5952 + 0.0082 |
DARE 0.4483 + 0.0193 0.4891 + 0.0391 0.4288 + 0.0977 | 0.7220 + 0.0165 0.6289 + 0.0059 0.6621 + 0.0096 0.5886 + 0.0113
| InterRAT 0.4191 £ 0.0943 0.5283 + 0.0935 0.4281 + 0.0189 | 0.7026 + 0.0092 0.6095 + 0.0028 0.6426 + 0.0223 0.5842 + 0.0078
RGDA 0.4087 £+ 0.0293 0.5089 + 0.0198 0.4286 + 0.0313 | 0.7246 + 0.0085 0.6235 + 0.0034 0.6605 + 0.0157 0.5906 + 0.0151
FedGR 0.4610 + 0.0289 0.5538 + 0.0398 0.4977 + 0.0315 | 0.7387 + 0.0186 0.6316 + 0.0054 0.6690 + 0.0174 0.6017 + 0.0202
FedGR w/o diff | 0.4493 + 0.0238 0.5293 + 0.0483 0.4333 + 0.0471 | 0.7214 + 0.0124 0.6222 + 0.0055 0.6623 + 0.0033 0.5886 + 0.0047
FedGR w/o com | 0.4571 £+ 0.0372 0.5438 + 0.0551 0.4682 + 0.0388 | 0.7321 + 0.0233 0.6298 + 0.0035 0.6668 + 0.0048 0.5978 + 0.0021




1 Experiments

» Performance of Complement-aware
augmenter in centralized scenarios (RQ2)
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B SERSRnRREEEEES Rationale evaluation

» Generalizability of FedGR (RQ?3)

Table 2. Structural Generalizability of FedGR with the GIN back-
bone. Each rationalization method in FedGR is highlighted in gray.

MolHIV MolToxCast MolBBBP MolSIDER
DisC 0.7212 0.6274 0.6561 0.5869
DisC+FedGR 0.7313 (11.01%) 0.6301 (10.27%) 0.6618 (10.57%) 0.5942 (10.73%)
RGDA 0.7246 0.6235 0.6605 0.5906
RGDA+FedGR 0.7344 (10.98%) 0.6326 (10.91%) 0.6673 (10.68%) 0.6008 (11.02%)
GSAT 0.7149 0.6255 0.6555 0.5952
GSAT+FedGR  0.7267 (11.18%) 0.6293 (10.38%) 0.6628 (10.73%) 0.5980 (10.28%)
InterRAT 0.7026 0.6095 0.6426 0.5842
InterRAT+FedGR 0.7193 (11.67%) 0.6245 (11.50%) 0.6587 (11.61%) 0.5927 (10.85%)
DARE 0.7220 0.6289 0.6621 0.5886

DARE+FedGR  0.7291 (10.71%) 0.6331 (10.42%) 0.6686 (10.65%) 0.5945 (10.59%)
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