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Background
Background
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Ø Graph Rationalization
• Graph Neural Networks (GNNs) have become ubiquitous in graph 

classification tasks, demonstrating remarkable performance.
• Graph rationalization– How to provide explanations for GNNs?

Graph
classification:

Whether the compound is 
active against HIV?

Graph
rationalization:

predict

select
rationale

complement

Whether the compound is 
active against HIV?predict

[ only for example ]
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Ø Problems of Graph Rationalization -- Low Faithfulness
• It is easy to exploit spurious correlations (aka., shortcuts) to yield the prediction results and 

compose the rationales.

[1] Xiang Deng, Xiang Deng, Comprehensive Knowledge Distillation with Causal Intervention.NeurIPS2021

[1]
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Ø How to solve the shortcut problem?
• By generating multiple samples that deviate from the existing distribution, these models 

alleviate employing shortcuts to make predictions within the current data distribution
• Numerous de-shortcut rationalization methods are designed mitigate the shortcut problem.

[2] Gang Liu et.al. Graph Rationalization with Environment-based Augmentations. KDD2022.

[2]
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Ø How to solve the shortcut problem?
• By generating multiple samples that deviate from the existing distribution, these models 

alleviate employing shortcuts to make predictions within the current data distribution
• Numerous de-shortcut rationalization methods are designed mitigate the shortcut problem.

[2] Gang Liu et.al. Graph Rationalization with Environment-based Augmentations. KDD2022.

All methods are designed in centralized datasets.
Rationalizations have not been extensively explored in Federated Learning (FL) scenarios.
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Ø The shortcut problem in Graph rationalization under FL scenarios
• Different clients tend to employ client-specific shortcuts for prediction.

Each client has its own data distributions (i.e., the shortcuts).
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Anti-shortcut Augmentations for FedGR
FedGR
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Ø Vanilla Graph Rationalization
We present the detail of the vanilla graph rationalization in the general scenario.

Selector in Graph Rationalization.

Predictor in Graph Rationalization.

Rationale:
Complement:

sample
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Ø Framework of Federated Graph Rationalization

Anti-shortcut Augmentations:
① Complement-aware Augmenter

② Difference-aware Augmenter
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Ø Complement-aware Augmenter
• Based on the sufficiency and independence [3][4] of the rationalization method, for each client, we 

design a complement-aware augmenter to enhance the diversity of local data distributions.
Definition 3.1. Sufficiency Principle for Rationalization:

Definition 3.2. Independence Principle for Rationalization:

The objective to compose invariant rationales:

Employ the contrastive constraint to achieve:

[3] DeYoung, J et al., ERASER: A benchmark to evaluate rationalized NLP models. ACL2020.
[4] Li, S et al., Let invariant rationale discovery inspire graph contrastive learning. ICML2022
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Ø Implementation of Complement-aware Augmenter

• After satisfying the sufficiency and independence principles, we can pull R and G closer together 
while pushing R and E, E and Y apart. Then, we derive the following equation:

• Data Augmentation:
Data Augmentation
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Ø Difference-aware Augmenter

[5] Xu, Y, et al.Bias-eliminating augmentation learning for debiased federated learning.CVPR2023,

[5]
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Ø Implementation of Difference-aware Augmenter

• Consider the complexity of the graph structure, we do not perturb the edges of the graph.
• For simplicity, we employ a masking transformation on the node features of the graph to generate the 

new graph.
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Experiments

Ø RQ1: How effective is FedGR in improving task prediction?

Rationale evaluation

Ø RQ2: How well does the complement-aware augmenter mitigate 
the shortcut problem?

Ø RQ4: How FedGR scales with an increasing number of clients?

State Key Laboratory of Cognitive Intelligence，University of Science and Technology of China

Ø RQ3: Can the framework of FedGR with the difference-aware
augmenter contribute to the performance improvement in
existing de-shortcut rationalization methods?



Experiments

Ø Overall Performance (RQ1)

Rationale evaluation
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Rationale evaluation
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Ø Performance of Complement-aware 
augmenter in centralized scenarios (RQ2)

Ø Generalizability of FedGR (RQ3)
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Rationale evaluation
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Ø Scalability of FedGR (RQ4)
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