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Introduction
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Introduction

* A:The underlying continuous metric constraints (MC)
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MC-Aware Clustering: Necessity

« When we compare spatial samples, we need to notice that part of
the difference is the systematic variance due to the distance decay
of homogeneity, stated in spatial theories as semivariogram.
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5 autocorrelation autocorrelation
W3 (A, B) :

N

margin 6 |

S
.‘ 4,

*\C

B\ C ¥ No penalty
4?Pena.lty :

Passing goodness-of-fit test

d(A,C)

! with significance level 6

Semivariance W7

d(A,B)  d(A0) ran:ge p

Metric (spatial) distance d,
Empirical generalized model-based semivariogram 7,, = [E(i’ j)eNszz(i, J), N, is the set of observations whose metric distance is d.

Theoretical generalized model-based semivariogram y,, fitted from 7, Shifted theoretical generalized model-based semivariogram y,, — 6

Zhangyu Wang, Department of Geography UC SANTA BAR BARA




MC-Aware Clustering: Challenges

We need to carefully distinguish the systematic variance from the frue
difference between samples, like filtering background noise.

However, the classic semivariogram has fatal limitations:

1
Y(h Lt €)= e
’Y( E) Q‘N(h:tf)’ Z ”Z ZJ’

{(pi,p;)EN (hte)}

Univariate

«  Modern machine learning/deep learning models are all high-dimensional. The classic
univariate definition of semivariogram does not generalize to multivariate cases.

Incompatible with gradient descent algorithms

« Semivariogram is a function of distance. It does not fit into real-value based losses.

Solutions?

« Multivariate, differentiable generalization of semivariogram — generalized model-
based semivariogram
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Generalized Model-based Semivariogram

« Model-based generalization:

Replace the univariate variance with multivariate statistical distance

— 1 m |3 variance between
2IN(h +¢€)| . J random variables

|

1 . ... statistical distance

Y(h £€):

ﬁ/m(h =+ E) = Z‘N(h i E)’ l J between distributions
(pi.p;)EN (he)

Here we use square Wasserstein-2 distance (a.k.a. square Earth Mover’s Distance)
W3 (i,5) = d5(ui, ) + Tr(Zi + 5 — 24)

Is this a valid generalization?
« If we view random variables as a special case of distributions (single-point distribution),
then the variance effectively equals the square Wasserstein-2 distance.
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Generalized Model-based Semivariogram

Theoreftical intuition: samples that belong to the same cluster should
have lower variance than the average variance of the entire dataset
at each distance lag (i.e., the semivariogram).

Empirical results meet the theoretical intuition extremely well:

range p=0.00265

Samples that show high chance of

—— empirical semi-variogram
=== shifted semi-variogram

belonging to the same cluster/class
(deep red) form a clear border that
resemble the curve of the generalized
semivariogram.
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This border can be used to help cluster

G6°C

spatial data as regularizing information
(i.e., soft constraints).

Semi-Variance {Wasserstein-2 Distance)

A 1266nu

SET

Geodesic Distance (radian)

Zhangyu Wang, Department of Geography UC SANTA BAR BARA




MC-Aware Clustering Objective

« MC-Aware Clustering Objective

Metric-constraint-unaware loss

LO)= > Y dulij)

{CreC} {i,5eCh}

_ sample difference
‘ measure

Metric-constraint penalized loss

ﬁmcm(c) _ Z Z id (% j):+ (- metric-constraint

{CreC) {i,5ECK}

Criteria for a good choice of (, )?

« (, ) should be differentiable.

« (,)shouldbeaddibleto (,),i.e., (,)+ (,)itself should be a valid, well-
defined mathematical amount.

« Most desirably, we wish  (, )+ (., ) to have some clear theoretical interpretation,
i.e., we can intuitively understand what we are minimizing.
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MC-Aware Clustering Objective

« MC-GTA Objective

We propose the MC-GTA (Model-based Clustering via Goodness-of-fit Tests with
Autocorrelations) objective

average sample

LEE) — Z Z [ difference over

{CreC} {i,j€CL} the entire data

dp (2, 7) ] By e

How much more
different of the
given sample pair
is than the data

average. average sample
difference over

the distance lag

Intuition behind the objective:

«  Minimizing the loss primarily encourages sample pairs within each cluster to have
lower than data average difference; secondarily, the sample pairs with higher than
the average difference over its distance lag, i.e., the semivariance, are punished.
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MC-Aware Clustering Objective

« MC-GTA Objective

Generalized semivariogram hinge penalty
Spatially penalized clustering objective

MRy = Y Y WEGL) + Br(i. )]

{CreC} {i,jeCk}

Merits of the MC-GTA objective:

« This objective is a natural extension of the conventional, non-penalized clustering
objective. It is obviously differentiable.
The property of square Wasserstein-2 distance ensures that minimizing the penalty
equals passing a goodness-of-fit test with null hypothesis being that “the two
distributions are statistically the same™.
Further math proves that square Wasserstein-2 distance is the tightest possible penalty.
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Experimental Resulis

Experimental results: temporal and spatial clustering

Synthetic Datasets

Temporal

Real-world Datasets

Spatial

Temporal
d=5,¢=5

Spatial
d=5,ic=5
N=10,000

Pavement
d=10, ¢=3
N=1.055

Vehicle
d=7;.¢e=5
N=16.641

Gesture
d=3, c=8
N=704.970

Climate
d=5, c=14
N=4.741

iNat2018
d=16, c=6
N=24,343

POI
d=7, c=10
N=23,019

Landuse
d=7, c=5
N=8.964

N=1,000
| ARI

ARI NMI NMI ARI ARI NMI ARI NMI

894 2154
33.67 41.83
37.51 41.64
811 2335 - -

14.17 NC NC

Model Type Model NMI |ARI NMI ARI NMI | ARI NMI ARI NMI

2.78
1.18

523
2.07

5.47
3.61
11.52

22.14
17.89
28.01

6.91
34.91
7.65

14.71
34.69
17.92

18.37
15.03
20.78

43.44
39.29
62.55

2.39
11.91
1.00

4.21
7.19
7.64

k-Means
DBSCAN
HDBSCAN
DTW

1.03
2.44
0.90
2.52

1.69
2:50
0.61
2:13

1.26
3.69
1.00

1.66
5.38
1.39

8.02
1525
7.10
17.13

6.59

18.75
11.66
17.55

No-Constraint
Model-Free

18.50
11.32
23.44

34.67
27.89
44.10

28.96
18.13
0.35

0.12
1.33
1.52

0.18
0.97
091

0.11
1.29
1.03

0.26
1.01
0.74

PCK-Means
MDST-DBSCAN
SKATER = 2

2.30
1.12
23.87

2.89
5.73
3229 | - . y - . .

25.51
8.43
0.51

Constrained
Model-Free

512 5.68 742 513 480

3591
NC
36.47

NC
40.49

16.38
13.29
3045

42.96
27.08
66.23

2.86
1.22
1291

4.61
12.60
28.72

10.35
89.28
84.74

28.05
58.54
76.10

28.74
58.83
74.36

57.87
40.12
63.31

58.78
45.86
58.60

19.06
13.30
16.63

34.97
30.53
36.73

2192
NC
21.90

NC
42.70

GMM
(STICC-B=0
MC-GTA-wo

7.82
80.11
86.38

9.26
91.28
87.34

9.54
83.95
84.56

No-Constraint

Model-Based 3.2

6.56

NC
39.81

NC
68.27

11.04
36.54

15.35
42.97

91.84
94.49

89.85
91.98

62.27
77.64

61.89
77.22

50.53
65.04

53.68
59.36

17.62
20.08

37.29
40.91

(S)TICC
MC-GTA-w

84.88
90.50

86.13
87.96

Constrained
Model-Based

Table 2. Comparing different feature similarity measures Table 4. Comparing different distance-based clustering algorithms

MC-GTA MC-GTA

(OPTICS)

ARI NMI
69.77 68.58

Method TICC MC-GTA

(Baseline)  (DBSCAN)  (HDBSCAN)

Performancs ARI NMI ARI NMI ARI NMI
62.27 61.89 77.64 7722 7235 69.61

Wasserstein-2  Euclidean Cosine  Total Var. KL-D IS-D

ARI NMI ARI NMI ARI NMI ARI NMI ARI NMI ARI NMI
77.64 77.22 23.11 22.43 0.34 1.36 3.37 3.61 56.73 66.10 15.55 18.84
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