

MC-GTA: Metric-Constrained Model-Based Clustering using Goodness-of-fit Tests with Autocorrelations

Zhangyu Wang, Gengchen Mai, Krzysztof Janowicz, Ni Lao

Presenter Biography

Zhangyu Wang

- 4th-Year PhD Candidate
- Department of Geography, University of California Santa Barbara
- Advisor: Krzysztof Janowicz (UCSB and UWien).
- Research Interest: spatially explicit GeoAI; machine learning/deep learning for geography; spatial information theory.

UC SANTA BARBARA

Introduction

• **Q**: Temporal/Spatial is special, but **how** and **why**?

Segmentation Classification

UC SANTA BARBARA

Introduction

• **A**: The underlying continuous **metric constraints (MC)**

UC SANTA BARBARA

MC-Aware Clustering: Necessity

• When we compare spatial samples, we need to notice that part of the difference is the **systematic variance** due to the distance decay of homogeneity, stated in spatial theories as **semivariogram**.

Empirical generalized model-based semivariogram $\hat{\mathcal{V}}_m = \hat{\mathbb{E}}_{(i,j)\in\mathbb{N}_d} W_2^2(i,j)$, \mathbb{N}_d is the set of observations whose metric distance is d. Theoretical generalized model-based semivariogram γ_m fitted from $\hat{\gamma}_m$ ------- Shifted theoretical generalized model-based semivariogram $\gamma_m - \delta$

UC SANTA BARBARA

MC-Aware Clustering: Challenges

- We need to carefully distinguish the systematic variance from the true difference between samples, like filtering background noise.
- However, the classic semivariogram has fatal limitations:

$$
\hat{\gamma}(h \pm \epsilon) := \frac{1}{2|N(h \pm \epsilon)|} \sum_{\{(\mathbf{p}_i, \mathbf{p}_j) \in N(h \pm \epsilon)\}} |z_i - z_j|^2
$$

Univariate

• Modern machine learning/deep learning models are all high-dimensional. The classic univariate definition of semivariogram does not generalize to multivariate cases.

Incompatible with gradient descent algorithms

- Semivariogram is a **function of distance**. It does not fit into real-value based losses.
- Solutions?
	- Multivariate, differentiable generalization of semivariogram **generalized model based semivariogram**

Office/Department/Division Name Zhangyu Wang, Department of Geography

Generalized Model-based Semivariogram

• Model-based generalization:

Replace the univariate variance with multivariate statistical distance

$$
\hat{\gamma}(h \pm \epsilon) := \frac{1}{2|N(h \pm \epsilon)|} \sum_{\{(\mathbf{p}_i, \mathbf{p}_j) \in N(h \pm \epsilon)\}} \frac{|z_i - z_j|^2}{\text{random variables}}
$$
\n
$$
\hat{\gamma}_m(h \pm \epsilon) := \frac{1}{2|N(h \pm \epsilon)|} \sum_{(\mathbf{p}_i, \mathbf{p}_j) \in N(h \pm \epsilon)} \frac{|W_2^2(i, j)|}{\sum_{i = 1, \dots, j} \text{statistical distance}}
$$
\n
$$
\text{statistical distance between distributions}
$$

Here we use square Wasserstein-2 distance (a.k.a. square Earth Mover's Distance)

$$
W_2^2(i,j) = d_2^2(\mu_i, \mu_j) + Tr(\Sigma_i + \Sigma_j - 2A)
$$

Is this a valid generalization?

• If we view random variables as a special case of distributions (single-point distribution), then the variance effectively equals the square Wasserstein-2 distance.

UC SANTA BARBARA

Generalized Model-based Semivariogram

- Theoretical intuition: samples that belong to the same cluster should have lower variance than the average variance of the entire dataset at each distance lag (i.e., the semivariogram).
- Empirical results meet the theoretical intuition extremely well:
- Samples that show high chance of belonging to the same cluster/class resemble the curve of the generalized semivariogram.
- (deep red) form a clear border that
resemble the curve of the generalized
semivariogram.
This border can be used to help cluster
spatial data as regularizing information
(i.e., soft constraints). This border can be used to help cluster spatial data as regularizing information (i.e., soft constraints).

MC-Aware Clustering Objective

• MC-Aware Clustering Objective

Metric-constraint-unaware loss

$$
\mathcal{L}(\mathcal{C}) = \sum_{\{C_k \in \mathcal{C}\}} \sum_{\{i,j \in C_k\}} d_m(i,j)
$$
\n
$$
\text{Metric-constraint penalized loss} \qquad \qquad \text{sample difference} \qquad \text{measure}
$$
\n
$$
\mathcal{L}^{\text{mem}}(\mathcal{C}) = \sum_{\{C_k \in \mathcal{C}\}} \sum_{\{i,j \in C_k\}} \left[d_m(i,j) \right] + \beta_r^{\text{irr}}(i,j) \qquad \text{metric-constraint} \qquad \text{penalty}
$$

Criteria for a good choice of $r(i, j)$?

- $r(i, j)$ should be differentiable.
- $r(i, j)$ should be addible to $d_m(i, j)$, i.e., $d_m(i, j) + \beta r(i, j)$ itself should be a valid, welldefined mathematical amount.
- Most desirably, we wish $d_m(i,j) + \beta r(i,j)$ to have some clear theoretical interpretation, i.e., we can intuitively understand what we are minimizing.

UC SANTA BARBARA

MC-Aware Clustering Objective

• MC-GTA Objective

We propose the MC-GTA (Model-based Clustering via Goodness-of-fit Tests with Autocorrelations) objective

Intuition behind the objective:

• Minimizing the loss primarily encourages sample pairs within each cluster to have lower than data average difference; secondarily, the sample pairs with higher than the average difference over its distance lag, i.e., the semivariance, are punished.

Office/Department/Division Name Zhangyu Wang, Department of Geography

MC-Aware Clustering Objective

• MC-GTA Objective

Generalized semivariogram hinge penalty

$$
r(i,j) = \lfloor W_2^2(i,j) - \lfloor \gamma_m(d_c(i,j)) - \delta \rfloor \rfloor_+
$$

Spatially penalized clustering objective

$$
\mathcal{L}^{\text{MC-GTA}}(\mathcal{C}) = \sum_{\{C_k \in \mathcal{C}\}} \sum_{\{i,j \in C_k\}} [W_2^2(i,j) + \beta r(i,j)]
$$

Merits of the MC-GTA objective:

- This objective is a natural extension of the conventional, non-penalized clustering objective. It is obviously differentiable.
- The property of square Wasserstein-2 distance ensures that minimizing the penalty equals passing a **goodness-of-fit test** with null hypothesis being that "the two distributions are statistically the same".
- Further math proves that square Wasserstein-2 distance is the **tightest possible** penalty.

Experimental Results

• Experimental results: temporal and spatial clustering

Table 4. Comparing different distance-based clustering algorithms

Method	TICC		MC-GTA		MC-GTA		MC-GTA	
	(Baseline)		(DBSCAN)		(HDBSCAN)		(OPTICS)	
Performance	ARI	NMI	ARI	NMI	ARI	NMI	ARI	NMI
	62.27	61.89	77.64	77.22	72.35	69.61	69.77	68.58

Thank You!

UC SANTA BARBARA

Zhangyu Wang, Department of Geography