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Set-up

Problem set-up:

® There is a data manifold M of intrinsic dimension k embedded in an
ambient euclidean space RY. Where d >> k.

® There is a probability distribution p, which is highly concentrated
around M.

® We are given a finite sample of data {x;}7_; C RY generated from p.

Diffusion models are generative models designed to learn p, but they don't
explicitly find k. We show how one could try to extract k from an already
trained diffusion model.
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Diffusion models and the score function
We consider an lto's diffusion:

dx = f(x, t)dt + g(t)dW

We can obtain time reversal of the SDE:

dx = [f(x,t) — g(t)*Vx In ps(x)]dt + g(t)dW

We use a neural network sy(x, t) to approximate the score function

vX |npt(X)'
Forward SDE (data — noise)
dxffxtdt—kg(tdw—)@

score function
@ e | g<tdt+gt>dw@

Reverse SDE (noise — data)

Y.Song et.al.
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Score field is perpendicular to the manifold

In p(x)
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Locally score vectors lie in the normal space
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Intrinsic dimension estimation method

Estimate the intrinsic dimension at xg

Input: sy - trained diffusion model (score)
to - sampling time
K - number of score vectors.
Sample xo ~ po(x) from the data set
d «+ dim(xo)
S + empty matrix
fori=1,... K do
Sample x(t(')) ~ N (x¢|x0, 02 1)
Append se(xg(')), to) as a new column to S
(Asi)f'jzly (vi)iy, (wi)iy < SVD(S)
k(x0) < d —i=1,..d—1 (5 — si+1)
Output: k(xo)
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Theory

Theorem

Let the support of the data distribution Py be contained within a compact
embedded sub-manifold M C RY. Denote by P; the distribution of
samples from Py diffused over a time duration t.

For any x € R? sufficiently close to M with its orthogonal projection on M
denoted as 7(x), if n is a unit vector pointing from x towards 7w(x), then

under mild conditions, for any unit vector v orthogonal to n, the following
holds:

v VIn pi(x)

—_—_— t .
nTvxlnpt(x)%O ast—0
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lllustrative Simple Case - line embedded in R?

The score at point x is given by

Vil pr(x) = Upl() /M<y — XN (ylx, o21)po(y)dy

- /M(y = x)wy(y; 0¢)dy.

cr?pt(x)

The score is the weighted average of
vectors pointing from x to y with weights
given by wi(y; ot). As o decreases,
wx(y; o) concentrates around 7(x).
Therefore, the score direction aligns with
m(x) —x as oy — 0

Vinp(x)

n(x) y
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Sketch of proof

The tubular neighborhood is a band around the manifold that contains all
points with a unique projection on the manifold (shown below in red).

A
V5"
/” ’\

Every compact embedded submanifold of RY has a tubular neighborhood.
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Sketch of proof (continued)

Let f(y) : M — R denote the squared distance function from x given by
fe(y) = lIx —yll3.
Using Morse theory, we establish that if x is in a tubular neighbourhood:

® 7(x) is a non-degenerate critical point of £ of index zero.

@® There exists a connected open neighbourhood E of m(x) such that

VyeeVgernefi(y) < k(). (1)

Lemma

There exists a connected open neighbourhood E of 7(x) such that,

(y|x,ozl)dy
Jane Nyl o) —0ast— 0. (2)
[e N(ylx, o2l)dy
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Sketch of proof (continued)

e Consider:
S e N(ylx, oZ1)dy

JeN(y|x, o2l)dy
® By the Mean Value Theorem:

/E exp{—y) 202} dy = Vol(E) exp{—f(y")/20?}
/ exp{—£(y)/202}dy = Vol(M \ E) exp{—£(§")/20%}
M\E

® Result:

Jane N (ylx, oft)dy _ Vol(M\ E) {_fx(g’*)_&(y*)}
[cN(Ixo2)dy  Vol(E) P 202
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Main theoretical result

Corollary

The ratio of the projection of the score VxIn p:(x) on the tangent space of
the data manifold T, M to the projection on the normal space N xyM
approaches zero as t approaches zero, i.e.

[TVxIn pe(x)||
INVxIn pe(x)]]
where N and T are projection matrices on ./\/',T(x)/\/l and Tr(xM

respectively. Therefore for sufficiently small t the score V In pi(x) is
(effectively) contained in the normal space Ny (xyM.

— 0, ast — 0.
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Experiments

k-spheres embedded in 100 dimensions with a random isometric
embedding

spaghetti line embedded in 100 dimensions

synthetic image manifolds embedded in 1024 dimensions.
MNIST
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k-spheres in 100 dimensions

Score Spectrum for 10-Sphere Score Spectrum for 50-Sphere
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Spaghetti in 100 dimensions

Score Spectrum for the Spaghetti Line

] 15/23



Square Manifold

Samples from the Square Manifold for different dimensions.
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Square Manifold

Score Spectrum Estimated Dimension

- 10
17.5
6000 - 20
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Gaussian Blobs Manifold
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Samples from the Gaussian Blobs Manifold for different dimensions.
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Gaussian Blobs Manifold

Score Spectrum Estimated Dimension
8000 i
i - 10
7000 40/ 20
= 100
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301
5000
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MNIST

35
MLE(m=20) : 13
—rrry R i T tncavenrss
8000 1:66 H ---- ID-NF : 182
— 2| i ---- Ours:152
| B
o “aw|| &, i
— 5129 | 2 :
6:126 | 2 H
4000 — 700 | 1S i
8148 | :
9:152 =10 H
05 H
3 L == 0.0 I e |
= 13 100 152 200 300 400 500
o 250 500 750 1000 850 900 950 1000 Latent dimension
MNIST score spectra Autoencoder validation

0 1 2 3 4 5 6 7 8 9
113 66 131 120 107 129 126 100 148 152

Table: Estimated dimension for each digit
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Summary of experimental results

Ground Truth  Ours

Euclidean Data Manifolds
10-sphere
50-sphere
Spaghetti line

Image Manifolds

Squares
k=10
k=20
k =100

Gaussian blobs
k=10
k=20
k =100

MNIST

10
50
1

10
20
100

10
20
100
N/A

11
51
1

11
22
100

12

21

98
152

ID-NF

11
51
1

9.7
19.5
94.2

9.8
17.8
56.3
182

MLE (m=5)

9.61
35.52
1.01

8.48
14.96
37.69

8.88
16.34
39.66
14.12

Local PCA PPCA

11
51
32

10
20
78

10
20
18
38

11
51
98

10
20
99

136
264
985
706

Table: Comparison of dimensionality detection methods on various data manifolds.
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Limitations

e Approximation error: Caused by imperfect score approximation
$9(%, £) ~ Vi In pe(x).
® Geometric error: Arises when t isn't sufficiently small, leading to:

® Increased tangential component of the score vector.
® Differences in normal spaces across sampled points due to manifold
curvature.
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Conclusions

® Qur estimator offers accurate ID estimates even for high dimensional
manifolds, indicating superior statistical efficiency to statistical
methods.

e This improvement is credited to the inductive biases of the
unconstrained neural network (NN) estimating the score function, the
critical quantity for ID estimation.

® Our theoretical results show that the diffusion model approximates the
normal bundle of the manifold (more information than just the ID).
We can potentially use a trained diffusion model to extract other
important properties of the data manifold, e.g. curvature.
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