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Set-up

Problem set-up:
• There is a data manifold M of intrinsic dimension k embedded in an

ambient euclidean space Rd . Where d ≫ k .
• There is a probability distribution p, which is highly concentrated

aroundM.
• We are given a finite sample of data {xi}ni=1 ⊆ Rd generated from p.

Diffusion models are generative models designed to learn p, but they don’t
explicitly find k . We show how one could try to extract k from an already
trained diffusion model.
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Diffusion models and the score function

We consider an Ito’s diffusion:

dx = f (x , t)dt + g(t)dW

We can obtain time reversal of the SDE:

dx = [f (x , t)− g(t)2∇x ln pt(x)]dt + g(t)dW

We use a neural network sθ(x , t) to approximate the score function
∇x ln pt(x).

Y.Song et.al.
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Score field is perpendicular to the manifold

sθ(x , ε) ≈ ∇x ln pε(x)
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Locally score vectors lie in the normal space
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Intrinsic dimension estimation method

Estimate the intrinsic dimension at x0

Input: sθ - trained diffusion model (score)
t0 - sampling time
K - number of score vectors.

1: Sample x0 ∼ p0(x) from the data set
2: d ← dim(x0)
3: S ← empty matrix
4: for i = 1, ...,K do
5: Sample x(i)t0 ∼ N (xt0 |x0, σ

2
t0I)

6: Append sθ(x
(i)
t0 , t0) as a new column to S

7: (si )
d
i=1, (vi )

d
i=1, (wi )

d
i=1 ← SVD(S)

8: k̂(x0)← d −i=1,..,d−1 (si − si+1)

Output: k̂(x0)
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Theory

Theorem

Let the support of the data distribution P0 be contained within a compact
embedded sub-manifoldM⊆ Rd . Denote by Pt the distribution of
samples from P0 diffused over a time duration t.
For any x ∈ Rd sufficiently close toM with its orthogonal projection onM
denoted as π(x), if n is a unit vector pointing from x towards π(x), then
under mild conditions, for any unit vector ν orthogonal to n, the following
holds:

νT∇x ln pt(x)
nT∇x ln pt(x)

→ 0 as t → 0.
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Illustrative Simple Case - line embedded in R2

The score at point x is given by

∇x ln pt(x) =
1

σ2
t pt(x)

ˆ
M
(y− x)N (y|x, σ2

t I)p0(y)dy

=
1

σ2
t pt(x)

ˆ
M
(y− x)wx(y ;σt)dy.

The score is the weighted average of
vectors pointing from x to y with weights
given by wx(y;σt). As σt decreases,
wx(y;σt) concentrates around π(x).
Therefore, the score direction aligns with
π(x)− x as σt → 0
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Sketch of proof

The tubular neighborhood is a band around the manifold that contains all
points with a unique projection on the manifold (shown below in red).

Every compact embedded submanifold of Rd has a tubular neighborhood.
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Sketch of proof (continued)

Let fx(y) :M−→ R denote the squared distance function from x given by
fx(y) = ∥x− y∥22.
Using Morse theory, we establish that if x is in a tubular neighbourhood:

1 π(x) is a non-degenerate critical point of fx of index zero.
2 There exists a connected open neighbourhood E of π(x) such that

∀y∈E∀ỹ∈M\E fx(y) < fx(ỹ). (1)

Lemma

There exists a connected open neighbourhood E of π(x) such that,
´
M\E N (y|x, σ2

t I)dy´
E N (y|x, σ2

t I)dy
→ 0 as t → 0. (2)
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Sketch of proof (continued)

• Consider: ´
M\E N (y|x, σ2

t I)dy´
E N (y|x, σ2

t I)dy

• By the Mean Value Theorem:
ˆ
E
exp{−fx(y)/2σ2

t }dy = Vol(E ) exp{−fx(y∗)/2σ2
t }ˆ

M\E
exp{−fx(y)/2σ2

t }dy = Vol(M\ E ) exp{−fx(ỹ∗)/2σ2
t }

• Result:
´
M\E N (y|x, σ2

t I)dy´
E N (y|x, σ2

t I)dy
=

Vol(M\ E )
Vol(E )

exp

{
− fx(ỹ∗)− fx(y∗)

2σ2
t

}
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Main theoretical result

Corollary

The ratio of the projection of the score ∇x ln pt(x) on the tangent space of
the data manifold Tπ(x)M to the projection on the normal space Nπ(x)M
approaches zero as t approaches zero, i.e.

∥T∇x ln pt(x)∥
∥N∇x ln pt(x)∥

→ 0, as t → 0.

where N and T are projection matrices on Nπ(x)M and Tπ(x)M
respectively. Therefore for sufficiently small t the score ∇x ln pt(x) is
(effectively) contained in the normal space Nπ(x)M.
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Experiments

• k-spheres embedded in 100 dimensions with a random isometric
embedding

• spaghetti line embedded in 100 dimensions
• synthetic image manifolds embedded in 1024 dimensions.
• MNIST
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k-spheres in 100 dimensions
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Spaghetti in 100 dimensions
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Square Manifold

10 20 100

Samples from the Square Manifold for different dimensions.
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Square Manifold
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Gaussian Blobs Manifold

10 20 100

Samples from the Gaussian Blobs Manifold for different dimensions.
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Gaussian Blobs Manifold
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MNIST

MNIST score spectra Autoencoder validation

0 1 2 3 4 5 6 7 8 9
113 66 131 120 107 129 126 100 148 152

Table: Estimated dimension for each digit
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Summary of experimental results

Ground Truth Ours ID-NF MLE (m=5) Local PCA PPCA
Euclidean Data Manifolds

10-sphere 10 11 11 9.61 11 11
50-sphere 50 51 51 35.52 51 51
Spaghetti line 1 1 1 1.01 32 98

Image Manifolds
Squares
k = 10 10 11 9.7 8.48 10 10
k = 20 20 22 19.5 14.96 20 20
k = 100 100 100 94.2 37.69 78 99

Gaussian blobs
k = 10 10 12 9.8 8.88 10 136
k = 20 20 21 17.8 16.34 20 264
k = 100 100 98 56.3 39.66 18 985

MNIST N/A 152 182 14.12 38 706

Table: Comparison of dimensionality detection methods on various data manifolds.
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Limitations

• Approximation error : Caused by imperfect score approximation
sθ(x, t) ≈ ∇x ln pt(x).
• Geometric error : Arises when t isn’t sufficiently small, leading to:

• Increased tangential component of the score vector.
• Differences in normal spaces across sampled points due to manifold

curvature.
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Conclusions

• Our estimator offers accurate ID estimates even for high dimensional
manifolds, indicating superior statistical efficiency to statistical
methods.

• This improvement is credited to the inductive biases of the
unconstrained neural network (NN) estimating the score function, the
critical quantity for ID estimation.

• Our theoretical results show that the diffusion model approximates the
normal bundle of the manifold (more information than just the ID).
We can potentially use a trained diffusion model to extract other
important properties of the data manifold, e.g. curvature.
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