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Learning problem for time-series

X = Rnu – input-space, Y = Rny output space.

x(t) ∈ X – input process, y(t) ∈ Y – output process, t ∈ Z –
time axis.

Hypotheses:
H ⊆ { functions of the form h :

⋃∞
k=1(X× Y)k → Y}.

h({x(s), y(s)}t−1
s=0) – prediction of output y(t) based on past

values of the inputs and outputs.

Quadratic loss function: ` : Y× Y→ [0,+∞),

`(y , y
′
) = ‖y − y

′‖2
2

`(y(t), h({x(s), y(s)}t−1
s=0)) difference between the output

predicted by h ∈ H and true output.

True error for a hypothesis h: long-term prediction error

L(h) = lim
t→∞

E[`(y(t), h({x(s), y(s)}t−1
s=0))]
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Learning problem for time-series

Learning problem: based on samples of {(x(t), y(t))}Nt=1 find
h? ∈ H such that L(h?) is small.

Solution:

1 define the empirical error for hypothesis h:

L̂N(h) =
1

N

N−1∑
t=0

`(y(t), h({x(s), y(s)}t−1
s=0)).

2 let h? be such that
(
L̂N(h?) + regularization term

)
is small.

Question:

What can we say about the true error L(h?) ?
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Assumptions: hypothesis class

Hypotheses are parametrised by θ ∈ Θ, i.e., θ 7→ hθ ∈ H, and are
realized by stable LTI (linear time-invariant) dynamical systems

ŝ(t + 1) = Âθ ŝ(t) + B̂θx(t) + K̂θy(t), ŝ(0) = 0

hθ({x(τ), y(τ)}t−1
τ=0) := Ĉθ ŝ(t)

(1)

hθ({x(τ), y(τ)}t−1
τ=0) – the prediction of the current label y(t)

based on the past values of inputs and labels.

Recurrent neural networks (RNNs) with a linear activation
function, and classical autoregressive models (ARX, ARMAX) are
included.
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Assumptions: data generator

Data is generated by a stable linear dynamical system driven
by a sub-Gaussian zero mean i.i.d. noise eg ,

sg (t + 1) = Agsg (t) + Bgx(t) + Kgeg (t)

y(t) = Cgsg (t) + eg (t)
(2)

Data generator =⇒ hypothesis hθtrue with minimal true loss

sg (t + 1) = (Ag − KgCg )sg (t) + Bgx(t) + Kgy(t)

hθtrue ({x(τ), y(τ)}t−1
τ=0) = Cgsg (t)

Minimizing empirical loss =⇒ approximating the data generator.
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PAC-Bayesian bounds with Rényi divergence

Theorem (Main contribution)

For all δ ∈ [0, 0.5), for any prior probability density π on Θ

P
(
∀ρ probability density on Θ, ρ� π :

Eθ∼ρL(θ)︸ ︷︷ ︸
true error

≤ Eθ∼ρL̂N(θ)︸ ︷︷ ︸
empirical error

+rN(π, ρ, δ)
)
> 1− 2δ

rN(π, ρ, δ) ,
K√
δN
D̄2(ρ|π)

[
G1 +

4√
N
G2

] (3)

P – probability on data.

Eθ∼ρ – expectation over all parameters (hypotheses) using density ρ.

D̄2(ρ|π) ,

(
Eθ∼π

(
ρ(θ)
π(θ)

)2
) 1

2

– Rényi divergence, i.e., a sort of distance,

between the posterior ρ and the prior π.

6/11 Mihály Petreczky PAC-Bayesian Error Bound, via Rényi Divergence, for a Class of Linear Time-Invariant State-Space Models



Discussion on the bound

O
(

1√
N

)
bound, converges to zero

G1,G2 – quadratic in the `1-norm of the data generator
(Ag ,Bg ,Kg ,Cg ) and of the `1 the hypothesis class
(Aθ,Bθ,Kθ,Cθ,Dθ)

K depends on the variance of the noise of the data generator.

`1-norms depend on the stability (robustness) of the
hypotheses and data generator.
More stability =⇒ smaller generalization gap.

Dependence on 1√
δ

instead of ln( 1
δ ).
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Learning using the PAC-Bayesian bound

(1) find a posterior ρ = ρ̂N which minimizes

Eθ∼ρ[L̂N(θ)] +
K√
δN
D̄2(ρ|π)

[
G1 +

4√
N
G2

]

(2) θ? is one of the following:

θ? random sample from ρ̂N , or

most likely model, i.e. θ? = supθ∈Θ ρ̂N(θ), or

θ? is the mean model: Eθ∼ρ̂Nθ.

PAC-Bayesian bound (3) =⇒ high probability bounds

on the generalization gap L(θ?)− L̂N(θ?)

on the parameter estimation error θ? − θtrue .
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Numerical example
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Figure: Results of a synthetic example, the case of w = u, 10 different
realisations of data, rN = rN(ρ, π)

The data is generated by (2) with 2 states, such that nu = ny = 1,
eg (t) ∼ N (0,Qe),

hypotheses: linear systems with two states.
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Novelty, revelance, & conclusions

PAC-Bayesian bounds for i.i.d. data using KL divergence [1] is
a classical topic. Using Rényi divergence [2, 3] allows to cover
additional cases.

We have extended prior results to dynamical systems in
state-space form and non i.i.d. data.
Our results extend the bounds for autoregressive models from
[4, 2].

Stability is the key: it makes the data weakly dependent.

Future research: evaluate the bounds on realistic
parametrizations and data sets.
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Bégin, L., Germain, P., Laviolette, F., and Roy, J.-F.
Pac-bayesian bounds based on the Rényi divergence. Artificial
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