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— VRP & Min-max VRP

2

Vehicle Routing Problem (VRP) traverses all given Min-max VRP restricts the number of routes and
customers and aims to minimize the total route length. aims to minimize the length of the longest route.
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VRPs have a wide range of practical applications Min-max VRPs are also of practical significance.
These problems are hard to solve and lack exploration.

[1] Kumar, S. N. and Panneerselvam, R. A survey on the vehicle routing problem and its variants. Scientific research Publishing, 2012.



— Min-max VRP

Defination of a min-max VRP instance Min-max VRPs involved in this article

0
A min-max VRP instance with M routes (generated by
M agents), D depots, and N customers is defined over a

2.1. Sequential Planning for Solving Min-max VRPs " _- >I\
(] \ J O

graph G = {V,E}. Each v; € V represents a depot or a Vg :

customer and e;; € £ represents the edge between node v, min-max mTSP min-max mPDP

and v;. The solution (i.e., a set of routes) 7 is formed by (N=10,D=1.M=3) (N=10.D=1,M=3)

node indexes in V, and each customer in V' can only get

visited once. Moreover, the number of routes in solution o o E &

T is restricted to M (i.e., T = {71,...,7}). Each route o =0

7' fori € {1,..., M} only starts and ends at a depot. The

objective function of the min-max VRP can be formulated Q < e

as i f(’]') _ I L(Ti)’ i min;max I:‘IDV_RP min_—max EMDYRP
Foo elt, WD (N=10,D=2,M=3) (N=10,D=2,M=3)

where () is a set consisting of all feasible solutions, and

L(7?) calculates the Euclidean length of route 7°.
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(a) Four examples of min-max VRPs



— Neural solvers for VRP

There are several categories of Neural solvers, including
learning improvement heuristics, Neural Divide-and-conquer,
etc. Among them, constructive solvers generate nodes in VRP
solutions one by one and lead in both performance and

VRPs are generally NP-hard, so solving them requires
unacceptable time or special heuristics. Neural solvers for
VRPs do not require expert experience and have fast solving
speed, making it a widespread choice in recent years.

efficiency.
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4 [1] Bengio, Yoshua, Andrea Lodi, and Antoine Prouvost. "Machine learning for combinatorial optimization: a methodological tour d’ horizon." European Journal of Operational Research 290.2 (2021): 405-421.




—  Neural solvers for min-max VRP

Neural min-max VRP solvers include two-stage methods, learning improvement heuristics, parallel planning

methods,

and sequential planning methodsp;

Among them, sequential planning methods, sequentially construct the set of routes with a single model. This
approach facilitates the exploration of the optimal solution.

min-max mTSP
(N=10,D=1 M=3)

[1] Cao, Y., Sun, Z., and Sartoretti, G. Dan: Decentral
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ized attention-based neural network to solve the min
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min-max mTSP
Solution

max multiple traveling salesman problem. arXiv preprint arXiv:2109.04205, 2021.
[2] Son, Jiwoo, et al. "Equity-Transformer: Solving NP-Hard Min-Max Routing Problems as Sequential Generation with Equity Context." Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 38. No. 18. 2024.



—  Motivation - DPN

[ —
Motivation: Existing sequential planning methods are without specific design in both model

structure and training scheme, resulting in deficiencies in the representation ability of embeddings.

The tasks of assigning customers to M routes (1.€., partition) and optimizing the routing of customers
assigned to each route (i.e., navigation) are considered simultaneously in solving min-max VRPs.

Partition. Customers and depots assigned to the route Navigation. The navigation task (generally being TSP)
Tt fori € {1,..., M} forms a partition of G. Each sub- optimizes routings in each sub-graph G* fori € {1,...,M}.
graph is denoted as G'. The partition function Py 11 (G) = For sequential planning methods, if the number of nodes
{G'....,GMY with parameter § generates sub-graph parti- in G* is n’, the navigation policy 7y of G* can written as
tions with follows:

[] @ cosgey, [] & =g & ro(r16%) = [[p(r 011 0).6.0), @)

In single-stage sequential planning processes, representations of partition and navigation tasks are
processed 1n agent embeddings, depot embeddings, and customer embeddings.

Partition and navigation have different requirements, so decoupling their representations will
improve the representation ability.

6 [1] Vandermeulen, ., Roderich, G., and Andreas, K. Balanced task allocation by partitioning the multiple traveling salesperson problem. In 2019 ICAAMS, pp. 1479— 1487. ACM, 2019.



— Methodology - DPN
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This paper aims to fully exploit
the problem-specific properties
of min-max VRPs, particularly
the requirements of decoupling
partition and navigation.

DPN proposes a novel
attention-based P&N Encoder,
an APS-Loss to facilitate
training, and a Rotation-based
PE for representation ability.



— Methodology - DPN - P&N Encoder

To decouple the representation of partition and navigation tasks, P&N Encoder designs separate
parts to process different embeddings. In min-max mTSP, each P&N Encoder layer consists of a
navigation part and a partition part.
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In order to maintain consistency with the characteristics of the partition process, we also utilize
the multi-head sharp attention in the partition part as follows:

MHSA(X,C) = Concat(S1, ..., Sg)Wp,
where Si = Softmax (XWqo(CWgk)T) CWy.



— Methodology - DPN - APS-Loss

The P&N Encoder explores problem-specific model structures to fit the requirements of min-max VRP. Moreover,
it 1s also important to explore problem-specific loss functions to facilitate training.

The proposed DPN presents an agent-permutation-symmetry (APS) trait in solving min-max VRPs, which means
changing the construction order of the M agents without changing the optimal min-max VRP solution.

Using APS, the APS-Loss proposed in this article obtains K Monte Carlo samples to represent the route
construction orders, and then generates K solutions. The average objective function of these K solutions is used
as the baseline for reinforcement learning. The formula of APS-Loss is as follows:

APS-equipped baseline APS-Loss
| K mo(T|G, M,0)) = Hrg flgo:” (16)
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— Methodology - DPN - Rotation-based PE

In addition, this article also introduces rotation-based positional encodings to adapt to the requirements of partition

tasks. The formula of Rotation-based PE i1s modified from the existing sinusoidal PE (SPE) as followsy:

lg/2]

SPE(m,q) =

la/2]

cos(m /10,000 4

Rotation-based PE can meet the requirement of modeling different partition strategies for min-max VRP instances

with different depot locations.
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Results

Min-max mTSP100(N=99,D=1)

M= 5 7 10
Methods Obj. Gap Time Obj. Gap Time Ob;. Gap Time
HGA 2.1893 - 20m 1.9963 0.1240% l6m 1.9507 0.0273% 14m
LKH3 2.1924 0.1410% 16m 1.9939 - 17m 1.9502 - 17m
OR-Tools(600s) 2.3477 71.2346% S5m 2.1627 8.4671% 6m 2.1465 10.068% Tm
DAN 2.6995 23.305% 40s 23115 15.930% 42s 2.1556 10.534% 46s
Equity-Transformer 2.3042 5.2456% <ls 2.0487 2.7480% <ls 1.9583 0.4153% <ls
Equity-Transformer- x 8aug 2.2563 3.0577% <1s 2.0225 1.4345% <ls 1.9534 0.1652% <ls
DPN 2.2704 3.7017% <1s 2.0335 1.9860% <ls 1.9587 0.4377% <ls
DPN-x 8aug 2.2346 2.0703% <ls 2.0143 1.0223% <ls 1.9534 0.1671% <ls
DPN-x 8aug-x 16per 2.2314 1.9240% ls 2.0126 0.9388% Is 1.9532 0.1542% Is
Min-max mPDP100(N=100,D=1)
M= 3 f) 10
Methods Ob;. Gap Time Ob;. Gap Time Oby;. Gap Time

OR-Tools(600s) 14.315 309.48% 4h 14.486 378.96% 5h 14.500 438.07% 5h
Equity-Transformer 5.5571 58.958% <ls 4.4831 48.234% <ls 3.7483 39.092% <ls
Equity-Transformer- x 8aug 5.0735 45.123% ls 4.1152 36.069% ls 3.4411 27.690% Is
DPN 3.6500 4.4054% o 3.1404 3.8364% <ls 2.7998 3.8933% <ls
DPN- x 8aug 3.3123 0.4673% Is 3.0430 0.6165% Is 2.7101 0.5647% ls
DPN- x 8aug- x 16per 3.4960 - 2s 3.0244 - 2s 2.6949 - 2s
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Results

Min-max mTSP200

Min-max mTSP500

Min-max mTSP1,000

M= 10 15 20 30 40 50 50 75 100

Methods Ob;. Obyj. Ob;. Ob. Ob;. Ob;. Ob;. Ob;. Ob;.
HGA 1.9861 1.9628 1.9627 2.0061 2.0061 2.0061 2.0448 2.0448 2.0448
LKH3 1.9817 1.9628 1.9628 2.0061 2.0061 2.0061 2.0448 2.0448 2.0448
OR-Tools(600s) 2.3711 2.3687 2.3687 8.9338 8.9356 8.9308 16.436 16.436 16.436

NCE* 2.07 1.97 1.96 2.07 2.01 2.01 213 2.07 2.05
DAN 2.3586 2.1732 21151 2.2345 2.1610 2.1465 2.3390 2.2544 2.2394

ScheduleNet* 2.35 2:13 207 2.16 212 2.09 2.26 2.17 2.16
Equity-Transformer-F- x 8aug 2.0500 1.9688 1.9631 2.0165 2.0084 2.0068 2.0634 2.0531 2.0488
DPN-F- x8aug 2.0030 1.9647 1.9628 2.0065 2.0061 2.0061 2.0452 2.0448 2.0448
DPN-F- x8aug-x 16per 1.9993 1.9640 1.9628 2.0061 2.0061 2.0061 2.0450 2.0448 2.0448

Min-max mPDP200 Min-max mPDP500 Min-max mPDP1,000

M= 10 15 20 30 40 50 50 3 100

Methods Ob;. Ob;. Obj. Obj. Ob;. Ob;. Obj. Ob;. Ob;.
OR-Tools(600s) 45.299 45.387 45.131 140.85 140.92 140.79 280.22 280.19 280.14
Equity-Transformer-F-x 8aug 49143 3.8186 3.3417 4.4619 39723 3.4455 4.9328 3.9198 3.5241

Equity-Transformer-F-sample* 4.68 3.65 3.18 4.11 3.52 3.23 4.73 3.37 3.38
DPN-F-x8aug 33227 2.8630 26735 3.1615 3.0264 29379 3.2802 3.0673 3.0000
DPN-F-x8aug-x 16per 3.2959 2.8363 2.6519 3.0878 29510 2.8690 3.2263 2.9811 29114




—  Results

M=

MDVRP50(N=50).0=6

MDVRP100(N=100).D=38

3 2 7 2 7 10
Methods Obj. Time Obj. Time Obj. Time | Obj. Time Obj. Time Obj. Time
e 225  40m 1.53 17m 1.28 1lm 1.85  50m 1.43 lh 1.18 lh
OR-Tools* 2.64 4m 1.68 5m 1.36 5m 2.17 6h 1.60 3h 1.29 2h
NCE* 2.25 3m 1.53 4m 1.28 5m 1.86 19m 143 20m  1.18  26m
DPN- x 8aug-x 16per 2.1491 <l1s 14431 <lIs 12012 <1s | 1.8056 s 14099 1s 1.1527 ls
DPN-F-x8aug-x16per 2.1404 Is 14394 1s 11969 1Is | 1.7936 2s 14001 2s 1.1429 2s
FMDVRP50(N=50), D=6 FMDVRP100(N=100),D=8
M= 3 2 7 5 7 10
Methods Obj. Time Obj. Time Obj. Time | Obj. Time Obj. Time Obj. Time
CE* 207  35m 1.41 15m 1.19 Om 1.74 6h 1.34 4h 1.09 l1h
OR-Tools* 2.39 4m 1.56 4m 127 4m 200 Slm 151 54m 120 57m
NCE* 2.08 2m 1.40 3m 1.19 4m 1.75 Illm 134 lom 109 22m
ScheduleNet* 2.61 9m 1.86 9m | P 10m 2.32 lh 1.86 lh 1.54 lh
DPN- x8aug-x 16per 20471 <1s 13869 <lIs 11619 <lIs | 1.7694 Is 1.3708 ls 1.1028 ls
DPN-F-x8aug-x 16per 2.0429 1s  1.3856 ls 1.1649 ls 1.7638  2s 13642  2s 1.1012  2s

DPN demonstrates advantages in min-max mTSP, min-max mPDP, min-max MDVRP, and min-max FMDVRP

with at most 1000 nodes.

The original article also provides ablation studies and experiments on benchmark datasets, very-large-scale
instances, and instances with different distributions.
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