

Conformal Prediction for Deep Classifier via Label Ranking

Jianguo Huang

Huajun Xi Linjun Zhang Yue Qiu Hongxin Wei Huaxiu Yao

ICML 2024

Paper:

Code:

Conformal prediction is a statistical framework that generates prediction sets containing the ground-truth labels with a desired coverage guarantee, i.e.,

 $\mathbb{P}(Y \in \mathcal{C}(X)) \geq 1 - \alpha,$

where (X, Y) is a test sample, C(X) represents the prediction set of test instance X and α is a significant level.

- 1 Any data distribution,
- 2 Any classifier (such as neural network, SVM, and so on).

Split Conformal Prediction

The process of Split Conformal Prediction:

- Split a dataset into two complementary subsets, i.e., a training fold \mathcal{D}_{tr} and a calibration fold \mathcal{D}_{cal} whose size $|\mathcal{D}_{cal}|$ is *n*.
- **2** Train a deep learning model on \mathcal{D}_{tr} ;
- Define a non-conformity score function s(x, y), e.g., Adaptive Prediction sets (APS):

$$S_{aps}(\mathbf{x}, y, u; \hat{\pi}) := \sum_{i=1}^{o(y, \hat{\pi}(\mathbf{x}))-1} \hat{\pi}_{(i)}(\mathbf{x}) + u \cdot \hat{\pi}_{(o(y, \hat{\pi}(\mathbf{x})))}(\mathbf{x}),$$
(1)

where u is an independent random variable satisfying a uniform distribution on [0, 1].

- 4 Compute τ as the $\frac{\lceil (n+1)(1-\alpha)\rceil}{n}$ quantile of the calibration scores $\{s(\mathbf{x}_i, y_i) : (\mathbf{x}_i, y_i) \in \mathcal{D}_{cal}\}.$
- **5** Use the quantile to generate the uncertainty intervals for a new instance x_{test} :

$$\mathcal{C}(\boldsymbol{x}_{test}, \tau) = \{ \boldsymbol{y} : \boldsymbol{s}(\boldsymbol{x}_{test}, \boldsymbol{y}) \leq \tau \}$$

Theorem

Suppose the calibration data $(X_i, Y_i, U_i)_{i=1,...,n}$ and a test instance $(X_{n+1}, Y_{n+1}, U_{n+1})$ are exchangeable. Let the set-valued function $C_{1-\alpha}(\mathbf{x}, u; \tau)$ satisfy the nesting property of τ , i.e., $\tau_1 \leq \tau_2 \Longrightarrow C_{1-\alpha}(\mathbf{x}_{n+1}; \tau_1) \subseteq C_{1-\alpha}(\mathbf{x}_{n+1}; \tau_2)$. For τ , we have the following coverage guarantee:

$$P(Y_{n+1} \in \mathcal{C}_{1-\alpha}(X_{n+1}, U_{n+1}; \tau)) \geq 1 - \alpha.$$

Long-tailed probability

Long-tail probability distribution results in the non-conformity scores of many classes falling within the threshold τ .

This motivates our question: does the probability value play a critical role in conformal prediction?

Jianguo Huang, et al

Motivation: APS without probabilities

• The score function of APS without probabilities is defined by:

$$S_{cons}(\boldsymbol{x}, y, u; \hat{\pi}) := o(y, \hat{\pi}(\boldsymbol{x})) - 1 + u.$$

 APS solely based on label ranking generates smaller prediction sets than the vanilla APS.

Theorem

Let A_r denote the accuracy of the top r predictions for a trained model $\hat{\pi}$ on an infinite calibration set. Given a significance level α , there exists an integer k satisfying $A_k \geq 1 - \alpha > A_{k-1}$. For any test instance $\mathbf{x} \sim \mathcal{P}_{\mathcal{X}}$ and an independent random variable $u \sim U[0, 1]$, the size of the prediction set $\mathcal{C}_{1-\alpha}(\mathbf{x}, u)$ generated by APS without probability value can be obtained by

$$|\mathcal{C}_{1-\alpha}(\boldsymbol{x}, \boldsymbol{u})| = \begin{cases} k, & \text{if } \boldsymbol{u} < \frac{1-\alpha - A_{k-1}}{A_k - A_{k-1}}, \\ k-1, & \text{otherwise.} \end{cases}$$
(2)

The expected value of the set size can be given by

$$\mathbb{E}_{u \sim [0,1]}[|\mathcal{C}_{1-\alpha}(\mathbf{x}, u)|] = k - 1 + \frac{1 - \alpha - A_{k-1}}{A_k - A_{k-1}}.$$
(3)

Formally, the non-conformity score of SAPS for a data pair (x, y) can be calculated as

$$S_{saps}(\mathbf{x}, y, u; \hat{\pi}) := \begin{cases} u \cdot \hat{\pi}_{max}(\mathbf{x}), & \text{if } o(y, \hat{\pi}(\mathbf{x})) = 1, \\ \hat{\pi}_{max}(\mathbf{x}) + (o(y, \hat{\pi}(\mathbf{x})) - 2 + u) \cdot \lambda, & \text{else} \end{cases}$$

where λ is a hyperparameter representing the weight of ranking information, $\hat{\pi}_{max}(\mathbf{x})$ denotes the maximum softmax probability and u is a uniform random variable.

Table: Performance comparison of various methods with different error rates.

	$\alpha = 0.1$							$\alpha = 0.05$						
	Coverage			Size ↓			Coverage			Size ↓				
Datasets	APS	RAPS	SAPS	APS	RAPS	SAPS	APS	RAPS	SAPS	APS	RAPS	SAPS		
ImageNet	0.899	0.900	0.900	20.95	3.29	2.98	0.949	0.950	0.950	44.67	8.57	7.55		
CIFAR-100	0.899	0.900	0.899	7.88	2.99	2.67	0.950	0.949	0.949	13.74	6.42	5.53		
CIFAR-10	0.899	0.900	0.898	1.97	1.79	1.63	0.950	0.950	0.950	2.54	2.39	2.25		

1 SAPS generates smaller prediction sets while maintain the valid coverage.

Detailed results of ImageNet on various models

	lpha= 0.1						lpha= 0.05						
	Coverage			Size \downarrow			Coverage			$Size \downarrow$			
Datasets	APS	RAPS	SAPS	APS	RAPS	SAPS	APS	RAPS	SAPS	APS	RAPS	SAPS	
ResNeXt101	0.899	0.902	0.901	19.49	2.01	1.82	0.950	0.951	0.950	46.58	4.24	3.83	
ResNet152	0.900	0.900	0.900	10.51	2.10	1.92	0.950	0.950	0.950	22.65	4.39	4.07	
ResNet101	0.898	0.900	0.900	10.83	2.24	2.07	0.948	0.949	0.950	23.20	4.78	4.34	
ResNet50	0.899	0.900	0.900	12.29	2.51	2.31	0.948	0.950	0.950	25.99	5.57	5.25	
ResNet18	0.899	0.900	0.900	16.10	4.43	4.00	0.949	0.950	0.950	32.89	11.75	10.47	
DenseNet161	0.900	0.900	0.900	12.03	2.27	2.08	0.949	0.950	0.951	28.06	5.11	4.61	
VGG16	0.897	0.901	0.900	14.00	3.59	3.25	0.948	0.950	0.949	27.55	8.80	7.84	
Inception	0.900	0.902	0.902	87.93	5.32	4.58	0.949	0.951	0.950	167.98	18.71	14.43	
ShuffleNet	0.900	0.899	0.900	31.77	5.04	4.54	0.949	0.950	0.950	69.39	16.13	14.05	
ViT	0.900	0.898	0.900	10.55	1.70	1.61	0.950	0.949	0.950	31.75	3.91	3.21	
DeiT	0.901	0.900	0.900	8.51	1.48	1.41	0.950	0.949	0.949	24.88	2.69	2.49	
CLIP	0.899	0.900	0.900	17.45	6.81	6.23	0.951	0.949	0.949	35.09	16.79	16.07	
average	0.899	0.900	0.900	20.95	3.29	2.98	0.949	0.950	0.950	44.67	8.57	7.55	

Table: The median-of-means for each column is reported over 10 different trials.

Results on conditional coverage

SAPS acquires lower ESCV, which is defined as in

$$\mathsf{ESCV}(\mathcal{C}, \mathcal{K}) = \sup_{j} \max(0, 1 - \alpha - \frac{\left|\{i \in \mathcal{J}_{j}: y_{i} \in \mathcal{C}(\mathbf{x}_{i})\}\right|}{|\mathcal{J}_{j}|}),$$

where $\mathcal{J}_{j} = \{i : |\mathcal{C}(\mathbf{x}_{i})| = j\}$ and $j \in \{1, ..., K\}$.

Each-Size Coverage Violation (ESCV), which is given by

Figure: ESCV on ImageNet.

Results on different distribution

 SAPS generates smaller prediction sets when the training distribution is different from the calibration distribution.

Figure: Average Set size on ImageNet-V2.

 Maximum softmax probabilities can exhibit sample difficulty, which allows SAPS to communicate instance-wise uncertainty.

• The set size of SAPS is not sensitive to variations in λ and the calibration size.

- Problem: Previous conformal prediction methods utilize unreliable softmax probabilities, which leads to suboptimal performance.
- Analysis: We compare the performance of APS with and without softmax probabilities. We show that APS solely based on label ranking generates smaller prediction sets than the vanilla APS.
- Method: We present SAPS, a simple and effective conformal prediction score function that discards almost all the probability values except for the maximum softmax probability.

ArXiv: https://arxiv.org/abs/2310.06430

Code: https:

//github.com/ml-stat-Sustech/conformal_prediction_via_label_ranking