Robust Data-driven Prescriptiveness Optimization

Mehran Poursoltani McGill University

Erick Delage HEC Montreal

🐯 McGill

Angelos Georghiou University of Cyprus

The Forty-first International Conference on Machine Learning (ICML 2024)

Stochastic Programming

- ξ traffic demand with distribution *F*
- ► *x* shortest path route

Contextual Stochastic Optimization

$$(\mathsf{CSO}) \ \boldsymbol{x}^*(\boldsymbol{\zeta}) \in \operatorname*{argmin}_{\boldsymbol{x} \in \mathcal{X}} \ \mathbb{E}_F \left[h(\boldsymbol{x}, \boldsymbol{\xi}) \middle| \boldsymbol{\zeta} \right]$$

Workday

Holiday

- ξ traffic demand
- $\zeta \in \{$ workday, holiday $\}$ side information
- ► *F* is the joint distribution $(\boldsymbol{\zeta}, \boldsymbol{\xi})$, $F_{\xi|\zeta}$ conditional distribution

Contextual Stochastic Optimization

(CSO)
$$\mathbf{x}^*(\boldsymbol{\zeta}) \in \operatorname*{argmin}_{\mathbf{x} \in \mathcal{X}} \mathbb{E}_F \left[h(\mathbf{x}, \boldsymbol{\xi}) \middle| \boldsymbol{\zeta} \right]$$

- $F(\boldsymbol{\xi}|\boldsymbol{\zeta})$ not known in practice
- Estimate conditional distribution *F*(ξ|ζ), e.g., KDE, random forest, etc.
- Can we trust the estimates?

Contextual Stochastic Optimization

(CSO)
$$\boldsymbol{x}^*(\boldsymbol{\zeta}) \in \operatorname*{argmin}_{\boldsymbol{x} \in \mathcal{X}} \mathbb{E}_F \left[h(\boldsymbol{x}, \boldsymbol{\xi}) \middle| \boldsymbol{\zeta} \right]$$

- $F(\boldsymbol{\xi}|\boldsymbol{\zeta})$ not known in practice
- Estimate conditional distribution *F*(ξ|ζ), e.g., KDE, random forest, etc.
- Can we trust the estimates?

Distributionally Robust Contextual Stochastic Optimization

(DRCSO)
$$x^*(\zeta) \in \underset{x \in \mathcal{X}}{\operatorname{argmin}} \sup_{F \in \mathcal{D}} \mathbb{E}_F \left[h(x, \boldsymbol{\xi}) \middle| \zeta \right]$$

where \mathcal{D} is admissible set of distributions (ambiguity set)

Relevant Literature

Ban and Rudin [2019] The big data newsvendor: Practical insights from machine learning

- Conditional Stochastic Optimization (CSO)
- Nadaraya-Watson Kernel regression
- Decision rules

Hannah et al. [2010] Nonparametric density estimation for stochastic optimization with an observable state variable

- Conditional Stochastic Optimization (CSO)
- Nadaraya-Watson Kernel regression
- Dirichlet process mixture models

Bertsimas and Van Parys [2022] Bootstrap robust prescriptive analytics

- Distributionally Robust Conditional Stochastic Optimization (DRCSO)
- Nadaraya-Watson Kernel regression
- Nearest neighbors learning

Wang et al. [2021] Distributionally robust prescriptive analytics with Wasserstein distance

- ► Distributionally Robust Conditional Stochastic Optimization (DRCSO)
- Nadaraya-Watson Kernel regression

Relevant Literature

Ban and Rudin [2019] The big data newsvendor: Practical insights from machine learning

- Conditional Stochastic Optimization (CSO)
- Nadaraya-Watson Kernel regression
- Decision rules

Hannah et al. [2010] Nonparametric density estimation for stochastic optimization with an observable state variable

- Conditional Stochastic Optimization (CSO)
- Nadaraya-Watson Kernel regression
- Dirichlet process mixture models

Bertsimas and Van Parys [2022] Bootstrap robust prescriptive analytics

- Distributionally Robust Conditional Stochastic Optimization (DRCSO)
- Nadaraya-Watson Kernel regression
- Nearest neighbors learning

Wang et al. [2021] Distributionally robust prescriptive analytics with Wasserstein distance

- ► Distributionally Robust Conditional Stochastic Optimization (DRCSO)
- Nadaraya-Watson Kernel regression

\implies How to compare different methods?

COEFFICIENT OF PRESCRIPTIVENESS¹

"Recently proposed performance measure"

Given a data-driven policy $x(\cdot)$ and distribution *F*

$$\mathcal{P}_F(\pmb{x}(\cdot)) := 1 - rac{\mathbb{E}_F[h(\pmb{x}(oldsymbol{\zeta}),oldsymbol{\xi})] - \mathbb{E}_F[\min_{\pmb{x}'\in\mathcal{X}}h(\pmb{x}',oldsymbol{\xi})]}{\mathbb{E}_F[h(\hat{\pmb{x}},oldsymbol{\xi})] - \mathbb{E}_F[\min_{\pmb{x}'\in\mathcal{X}}h(\pmb{x}',oldsymbol{\xi})]},$$

where $\hat{x} \in \operatorname{argmin}_{x} \mathbb{E}_{\hat{F}}[h(x, \xi)]$ with \hat{F} as the in-sample empirical distribution that puts equal weights on each observed data point (i.e. the solution of SAA)

¹Bertsimas and Kallus, MS, 2020

COEFFICIENT OF PRESCRIPTIVENESS¹

Given a data-driven policy $x(\cdot)$ and distribution *F*

 $\mathcal{P}_{F}(\mathbf{x}(\cdot)) := 1 - \underbrace{\frac{\mathbb{E}_{F}[h(\mathbf{x}(\boldsymbol{\zeta}), \boldsymbol{\xi})] - \mathbb{E}_{F}[\min_{\mathbf{x}' \in \mathcal{X}} h(\mathbf{x}', \boldsymbol{\xi})]}{\mathbb{E}_{F}[h(\hat{\mathbf{x}}, \boldsymbol{\xi})] - \mathbb{E}_{F}[\min_{\mathbf{x}' \in \mathcal{X}} h(\mathbf{x}', \boldsymbol{\xi})]}}_{\mathbf{distance from no to full information}},$

where $\hat{x} \in \operatorname{argmin}_{x} \mathbb{E}_{\hat{F}}[h(x, \xi)]$ with \hat{F} as the in-sample empirical distribution that puts equal weights on each observed data point (i.e. the solution of SAA)

¹Bertsimas and Kallus, MS, 2020

COEFFICIENT OF PRESCRIPTIVENESS

distance from full information

$$\mathcal{P}_{F}(\mathbf{x}(\cdot)) := 1 - \underbrace{\frac{\mathbb{E}_{F}[h(\mathbf{x}(\boldsymbol{\zeta}), \boldsymbol{\xi})] - \mathbb{E}_{F}[\min_{x' \in \mathcal{X}} h(x', \boldsymbol{\xi})]}{\mathbb{E}_{F}[h(\hat{\mathbf{x}}, \boldsymbol{\xi})] - \mathbb{E}_{F}[\min_{x' \in \mathcal{X}} h(x', \boldsymbol{\xi})]}}_{\mathbf{distance from no to full information}}$$

Properties

 $P_F = 1:$ $\mathbf{x}(\cdot)$ is fully anticipative in terms of $\boldsymbol{\xi}$.

Numerical Experiments

COEFFICIENT OF PRESCRIPTIVENESS

 $\mathcal{P}_{F}(\mathbf{x}(\cdot)) := 1 - \underbrace{\frac{\mathbb{E}_{F}[h(\mathbf{x}(\boldsymbol{\zeta}), \boldsymbol{\xi})] - \mathbb{E}_{F}[\min_{\mathbf{x}' \in \mathcal{X}} h(\mathbf{x}', \boldsymbol{\xi})]}{\mathbb{E}_{F}[h(\hat{\mathbf{x}}, \boldsymbol{\xi})] - \mathbb{E}_{F}[\min_{\mathbf{x}' \in \mathcal{X}} h(\mathbf{x}', \boldsymbol{\xi})]}}_{\mathbf{distance from no to full information}}$

Properties

 $P_F = 1:$ $x(\cdot)$ is fully anticipative in terms of $\boldsymbol{\xi}$.

Small $\mathcal{P}_F \approx 0$: $\mathbf{x}(\cdot)$ is not able to exploit information.

RISING POPULARITY OF THE COEFFICIENT OF PRESCRIPTIVENESS

Recent papers exploiting \mathcal{P}_F for evaluating the superiority of the contextual optimization methods:

- Bertsimas et al. [2016] Inventory management in the era of big data
- Bertsimas and Kallus [2020]
 From predictive to prescriptive analytics
- Notz and Pibernik [2022] Prescriptive analytics for flexible capacity management
- Kallus and Mao [2022] Stochastic optimization forests

RISING POPULARITY OF THE COEFFICIENT OF PRESCRIPTIVENESS

Recent papers exploiting \mathcal{P}_F for evaluating the superiority of the contextual optimization methods:

- Bertsimas et al. [2016] Inventory management in the era of big data
- Bertsimas and Kallus [2020]
 From predictive to prescriptive analytics
- Notz and Pibernik [2022] Prescriptive analytics for flexible capacity management
- Kallus and Mao [2022] Stochastic optimization forests

Can we optimize directly the coefficient of prescriptiveness in a way that is robust to distribution misspecification?

DISTRIBUTIONALLY ROBUST PRESCRIPTIVENESS COMPETITIVE RATIO (DRPCR)

$$\max_{\boldsymbol{x}(\cdot)\in\mathcal{H}} \inf_{F\in\mathcal{D}} \mathcal{P}_{F}(\boldsymbol{x}(\cdot)) := \\ \max_{\boldsymbol{x}(\cdot)\in\mathcal{H}} \inf_{F\in\mathcal{D}} 1 - \frac{\mathbb{E}_{F}[h(\boldsymbol{x}(\boldsymbol{\zeta}),\boldsymbol{\xi})] - \mathbb{E}_{F}[\min_{\boldsymbol{x}'\in\mathcal{X}} h(\boldsymbol{x}',\boldsymbol{\xi})]}{\mathbb{E}_{F}[h(\hat{\boldsymbol{x}},\boldsymbol{\xi})] - \mathbb{E}_{F}[\min_{\boldsymbol{x}'\in\mathcal{X}} h(\boldsymbol{x}',\boldsymbol{\xi})]}$$

► Under weak conditions the optimal value of DRPCR is necessarily in the interval [0, 1].

EPIGRAPH FORMULATION FOR DRPCR

DRPCR is equivalent to

$$\max_{\gamma} \gamma \qquad (1a)$$

subject to
$$\min_{\boldsymbol{x}(\cdot)\in\mathcal{H}} Q(\boldsymbol{x}(\cdot),\gamma) \leq 0$$
 (1b)
 $0 \leq \gamma \leq 1,$ (1c)

where

$$Q(\mathbf{x}(\cdot),\gamma) := \sup_{F \in \mathcal{D}} \mathbb{E}_F \Big[h(\mathbf{x}(\boldsymbol{\zeta}),\boldsymbol{\xi}) - \Big((1-\gamma)h(\hat{\mathbf{x}},\boldsymbol{\xi}) + \gamma \min_{\mathbf{x}' \in \mathcal{X}} h(\mathbf{x}',\boldsymbol{\xi}) \Big) \Big]$$

is a convex increasing function of γ .

EPIGRAPH FORMULATION FOR DRPCR

DRPCR is equivalent to

$$\max_{\gamma} \gamma \qquad (1a)$$

subject to
$$\min_{\boldsymbol{x}(\cdot)\in\mathcal{H}} Q(\boldsymbol{x}(\cdot),\gamma) \leq 0$$
 (1b)
 $0 \leq \gamma \leq 1,$ (1c)

where

$$Q(\mathbf{x}(\cdot),\gamma) := \sup_{F \in \mathcal{D}} \mathbb{E}_F \Big[h(\mathbf{x}(\boldsymbol{\zeta}),\boldsymbol{\xi}) - \Big((1-\gamma)h(\hat{\mathbf{x}},\boldsymbol{\xi}) + \gamma \min_{\mathbf{x}' \in \mathcal{X}} h(\mathbf{x}',\boldsymbol{\xi}) \Big) \Big]$$

is a convex increasing function of γ .

Idea to solve the problem: use the bisection method to bisect over γ *and solve the LHS of (1b) to see whether it satisfies the constraint!*

CHOICE OF THE AMBIGUITY SET

Assumption

There is a discrete distribution \overline{F} , with $\{\zeta_{\omega}\}_{\omega\in\Omega_{\zeta}}$ and $\{\xi_{\omega}\}_{\omega\in\Omega_{\xi}}$ as the set of distinct scenarios for ζ and ξ respectively, such that the distribution set \mathcal{D} takes the form of the "nested CVaR ambiguity set" with respect to $\mathbb{P}_{\overline{F}}$ and defined as

$$\bar{\mathcal{D}}(\bar{F},\alpha) := \left\{ \begin{array}{c} F \in \\ \mathcal{M}(\Omega_{\zeta} \times \Omega_{\xi}) \end{array} \middle| \begin{array}{c} \mathbb{P}_{F}(\boldsymbol{\zeta} = \boldsymbol{\zeta}_{\omega}) = \mathbb{P}_{\bar{F}}(\boldsymbol{\zeta} = \boldsymbol{\zeta}_{\omega}) \ \forall \omega \in \Omega_{\zeta}, \\ \mathbb{P}_{F}(\boldsymbol{\xi} = \boldsymbol{\xi}_{\omega'} | \boldsymbol{\zeta}_{\omega}) \leq (1/(1-\alpha)) \mathbb{P}_{\bar{F}}(\boldsymbol{\xi} = \boldsymbol{\xi}_{\omega'} | \boldsymbol{\zeta}_{\omega}) \\ \forall \omega \in \Omega_{\zeta}, \omega' \in \Omega_{\xi} \end{array} \right\}$$

where $\mathcal{M}(\Omega_{\zeta} \times \Omega_{\xi})$ is the set of all distributions supported on over the joint space $\{\boldsymbol{\zeta}_{\omega}\}_{\omega \in \Omega_{\zeta}} \times \{\boldsymbol{\xi}_{\omega}\}_{\omega \in \Omega_{\xi}}$.

CHOICE OF THE AMBIGUITY SET

Assumption

There is a discrete distribution \overline{F} , with $\{\zeta_{\omega}\}_{\omega\in\Omega_{\zeta}}$ and $\{\xi_{\omega}\}_{\omega\in\Omega_{\xi}}$ as the set of distinct scenarios for ζ and ξ respectively, such that the distribution set \mathcal{D} takes the form of the "nested CVaR ambiguity set" with respect to $\mathbb{P}_{\overline{F}}$ and defined as

$$\bar{\mathcal{D}}(\bar{F},\alpha) := \left\{ \begin{array}{c} F \in \\ \mathcal{M}(\Omega_{\zeta} \times \Omega_{\xi}) \end{array} \middle| \begin{array}{c} \mathbb{P}_{F}(\boldsymbol{\zeta} = \boldsymbol{\zeta}_{\omega}) = \mathbb{P}_{\bar{F}}(\boldsymbol{\zeta} = \boldsymbol{\zeta}_{\omega}) \ \forall \omega \in \Omega_{\zeta}, \\ \mathbb{P}_{F}(\boldsymbol{\xi} = \boldsymbol{\xi}_{\omega'} | \boldsymbol{\zeta}_{\omega}) \leq (1/(1-\alpha)) \mathbb{P}_{\bar{F}}(\boldsymbol{\xi} = \boldsymbol{\xi}_{\omega'} | \boldsymbol{\zeta}_{\omega}) \\ \forall \omega \in \Omega_{\zeta}, \omega' \in \Omega_{\xi} \end{array} \right\}$$

where $\mathcal{M}(\Omega_{\zeta} \times \Omega_{\xi})$ is the set of all distributions supported on over the joint space $\{\boldsymbol{\zeta}_{\omega}\}_{\omega \in \Omega_{\zeta}} \times \{\boldsymbol{\xi}_{\omega}\}_{\omega \in \Omega_{\xi}}$.

 No ambiguity in the marginal distribution of the observed random variable ζ

CHOICE OF THE AMBIGUITY SET

Assumption

There is a discrete distribution \overline{F} , with $\{\zeta_{\omega}\}_{\omega\in\Omega_{\zeta}}$ and $\{\xi_{\omega}\}_{\omega\in\Omega_{\xi}}$ as the set of distinct scenarios for ζ and ξ respectively, such that the distribution set \mathcal{D} takes the form of the "nested CVaR ambiguity set" with respect to $\mathbb{P}_{\overline{F}}$ and defined as

$$\bar{\mathcal{D}}(\bar{F},\alpha) := \left\{ \begin{array}{c} F \in \\ \mathcal{M}(\Omega_{\zeta} \times \Omega_{\xi}) \end{array} \middle| \begin{array}{c} \mathbb{P}_{F}(\boldsymbol{\zeta} = \boldsymbol{\zeta}_{\omega}) = \mathbb{P}_{\bar{F}}(\boldsymbol{\zeta} = \boldsymbol{\zeta}_{\omega}) \ \forall \omega \in \Omega_{\zeta}, \\ \mathbb{P}_{F}(\boldsymbol{\xi} = \boldsymbol{\xi}_{\omega'} | \boldsymbol{\zeta}_{\omega}) \leq (1/(1-\alpha)) \mathbb{P}_{\bar{F}}(\boldsymbol{\xi} = \boldsymbol{\xi}_{\omega'} | \boldsymbol{\zeta}_{\omega}) \\ \forall \omega \in \Omega_{\zeta}, \omega' \in \Omega_{\xi} \end{array} \right\}$$

where $\mathcal{M}(\Omega_{\zeta} \times \Omega_{\xi})$ is the set of all distributions supported on over the joint space $\{\boldsymbol{\zeta}_{\omega}\}_{\omega \in \Omega_{\zeta}} \times \{\boldsymbol{\xi}_{\omega}\}_{\omega \in \Omega_{\xi}}$.

- No ambiguity in the marginal distribution of the observed random variable ζ
- Ambiguity solely on the unobserved random variable ξ and is sized using the parameter α

DRPCR UNDER NESTED CVAR

Corollary

Under the nested CVaR ambiguity set we have

$$\min_{oldsymbol{x}(\cdot)\in\mathcal{H}}Q(oldsymbol{x}(\cdot),\gamma)=\sum_{\omega\in\Omega_{\zeta}}\mathbb{P}_{ar{F}}(oldsymbol{\zeta}=oldsymbol{\zeta}_{\omega})\phi_{\omega}(\gamma)$$

where the optimal value of $\phi_{\omega}(\gamma)$ can be obtained through solving the following optimization problem

$$\begin{split} \min_{\boldsymbol{x}\in\mathcal{X},t,\boldsymbol{s}\geq0} & t + \frac{1}{1-\alpha}\sum_{\omega'\in\Omega_{\xi}}\mathbb{P}_{\bar{F}}(\boldsymbol{\xi} = \boldsymbol{\xi}_{\omega'}|\boldsymbol{\zeta} = \boldsymbol{\zeta}_{\omega})s_{\omega'}\\ \text{subject to} & s_{\omega'}\geq h(\boldsymbol{x},\boldsymbol{\xi}_{\omega'}) - \left((1-\gamma)h(\bar{\boldsymbol{x}},\boldsymbol{\xi}_{\omega'}) + \gamma\min_{\boldsymbol{x}'\in\mathcal{X}}h(\boldsymbol{x}',\boldsymbol{\xi}_{\omega'})\right)\\ & -t, \ \forall\omega'\in\Omega_{\xi}. \end{split}$$

This problem can be reduced to a linear program when \mathcal{X} is polyhedral and $h(\mathbf{x}, \boldsymbol{\xi}_{\omega'})$ is linear programming representable for all $\omega' \in \Omega_{\xi}$.

Robust Data-driven Prescriptiveness Optimization

Numerical Experiments •0000

SHORTEST PATH PROBLEM

Workday

SHORTEST PATH PROBLEM WITH CSO OBJECTIVE

$$\mathbf{x}^*(\boldsymbol{\zeta}) \in \operatorname*{argmin}_{\mathbf{x}\in\mathcal{X}} \mathbb{E}_{\hat{F}_{\boldsymbol{\xi}|\boldsymbol{\zeta}}}[\mathbf{x}^{ op}\boldsymbol{\xi}],$$

$$\mathcal{X} = \begin{cases} \mathbf{x} \in \mathbb{R}^{|\mathcal{A}|} \middle| \begin{array}{c} x_{(i,j)} \in \{0,1\} & \forall (i,j) \in \mathcal{A} \\ \sum_{j:(i,j) \in \mathcal{A}} x_{(i,j)} - \sum_{j:(j,i) \in \mathcal{A}} x_{(j,i)} = 1 & \text{if } i = o \\ \sum_{j:(i,j) \in \mathcal{A}} x_{(i,j)} - \sum_{j:(j,i) \in \mathcal{A}} x_{(j,i)} = -1 & \text{if } i = d \\ \sum_{j:(i,j) \in \mathcal{A}} x_{(i,j)} - \sum_{j:(j,i) \in \mathcal{A}} x_{(j,i)} = 0 & \forall i \in \mathcal{V} \setminus \{o, d\} \end{cases} \end{cases}$$

- ► A directed graph defined as G = (V, A), where V denotes the set of nodes and A ∈ V × V is the set of arcs.
- $\xi_{(i,j)}$ denotes the travel time of a directed path from node *i* to node *j*.
- $x_{(i,j)} = 1$ if we decide to travel from node *i* to node *j* and $x_{(i,j)} = 0$ otherwise.
- $\hat{F}_{\xi|\zeta}$ denotes the conditional distribution inferred from the training dataset.
- ► Adapt to the graph (*G*) structure employed in Kallus and Mao (2022)

ALTERNATIVE METHODS TO DRPCR

ALTERNATIVE METHODS TO DRPCR

Contextual Stochastic Optimization (CSO)

$$x^*(\boldsymbol{\zeta}) \in \operatorname*{argmin}_{x \in \mathcal{X}} \mathbb{E}_{\hat{F}_{\boldsymbol{\xi}|\boldsymbol{\zeta}}}[x^{\top}\boldsymbol{\xi}]$$

► Distributionally Robust Contextual Stochastic Optimization (DRCSO) $x^{*}(\boldsymbol{\zeta}) \in \arg\min_{\boldsymbol{x} \in \mathcal{X}} \sup_{F_{\boldsymbol{\xi} \mid \boldsymbol{\zeta}} \in \bar{\mathcal{D}}(\hat{F}_{\boldsymbol{\xi} \mid \boldsymbol{\zeta}}, \alpha)} \mathbb{E}_{F_{\boldsymbol{\xi} \mid \boldsymbol{\zeta}}}[\boldsymbol{x}^{\top} \boldsymbol{\xi}]$

ALTERNATIVE METHODS TO DRPCR

Contextual Stochastic Optimization (CSO)

$$x^*(\boldsymbol{\zeta}) \in \operatorname*{argmin}_{x \in \mathcal{X}} \mathbb{E}_{\hat{F}_{\boldsymbol{\xi}|\boldsymbol{\zeta}}}[x^{\top}\boldsymbol{\xi}]$$

 $\begin{aligned} \blacktriangleright & \text{Distributionally Robust Contextual Stochastic Optimization (DRCSO)} \\ & x^*(\boldsymbol{\zeta}) \in \arg\min_{\boldsymbol{x} \in \mathcal{X}} \sup_{F_{\boldsymbol{\xi} \mid \boldsymbol{\zeta}} \in \bar{\mathcal{D}}(\hat{F}_{\boldsymbol{\xi} \mid \boldsymbol{\zeta}}, \alpha)} \mathbb{E}_{F_{\boldsymbol{\xi} \mid \boldsymbol{\zeta}}}[\boldsymbol{x}^\top \boldsymbol{\xi}] \end{aligned}$

 Introduction

OUT-OF-SAMPLE COEFFICIENT OF PRESCRIPTIVENESS

16 / 18

Introduction 0000000

AVERAGE L-1 NORM DISTANCE TO SAA SOLUTION

TAKE-AWAY

- Under the nested CVaR ambiguity set, optimization of the coefficient of prescriptiveness in the DRO context leads to the special case of solving a series of linear programs.
- Roughly speaking, when the mean of the unobserved random variable is exposed to a distribution shift, the out-of-sample coefficients of prescriptiveness achieved by DRPCR policies are higher than those obtained by the alternative methods.