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STOCHASTIC VS. CONTEXTUAL OPTIMIZATION

Stochastic Programming

(SP) x* € argmin Er [h(x,ﬁ)]
xeX

Frequency

Traffic 5

» ¢ traffic demand with distribution F

» x shortest path route
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STOCHASTIC VS. CONTEXTUAL OPTIMIZATION

Contextual Stochastic Optimization

(CSO) x*(¢) € argmin Er [h(x, g)M

xekX

Workday Holiday ¢

» ¢ traffic demand

» ¢ € {workday, holiday} side information

> F is the joint distribution (¢, &), F¢|c conditional
distribution
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STOCHASTIC VS. CONTEXTUAL OPTIMIZATION

Contextual Stochastic Optimization

(CSO) x*(¢) € argmin E; [h(x, g)‘c]

xeX

» F(£|¢) not known in practice

» Estimate conditional distribution F(£/¢), e. 8.
KDE, random forest, etc.

» Can we trust the estimates?
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STOCHASTIC VS. CONTEXTUAL OPTIMIZATION
Contextual Stochastic Optimization

(CSO) x*(¢) € argmin E; [h(x, g)‘c]

xeX

» F(£|¢) not known in practice

» Estimate conditional distribution F( £lC), eg.,
KDE, random forest, etc.

» Can we trust the estimates?

Distributionally Robust Contextual Stochastic Optimization

(DRCSO) x*(¢) € argminsup Er [h(x,&)l(]
xex FeD

where D is admissible set of distributions (ambiguity set)
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RELEVANT LITERATURE

Ban and Rudin [2019] The big data newsvendor: Practical insights from machine learning
» Conditional Stochastic Optimization (CSO)
» Nadaraya-Watson Kernel regression
» Decision rules
Hannah et al. [2010] Nonparametric density estimation for stochastic optimization with an observable
state variable
» Conditional Stochastic Optimization (CSO)
» Nadaraya-Watson Kernel regression
» Dirichlet process mixture models
Bertsimas and Van Parys [2022] Bootstrap robust prescriptive analytics
» Distributionally Robust Conditional Stochastic Optimization (DRCSO)
» Nadaraya-Watson Kernel regression
» Nearest neighbors learning
Wang etal. [2021] Distributionally robust prescriptive analytics with Wasserstein distance
» Distributionally Robust Conditional Stochastic Optimization (DRCSO)
» Nadaraya-Watson Kernel regression
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—> How to compare different methods?
5/18



Introduction Robust Data-driven Prescriptiveness Optimization Numerical Experiments Conclusions
0000e00 0000 00000 o]
: :

COEFFICIENT OF PRESCRIPTIVENESS!

“Recently proposed performance measure”

Given a data-driven policy x(-) and distribution F

 Eel[h(x(),€)] - Eg[minyex h(x, &)
Er[h(%, €)] - Erlmingcx h(x',€)]

Pr(x() =1

where x € argmin, [Ez[h(x, )] with F as the in-sample empirical
distribution that puts equal weights on each observed data
point (i.e. the solution of SAA)

"Bertsimas and Kallus, MS, 2020
6/18



Introduction Robust Data-driven Prescriptiveness Optimization Numerical Experiments Conclusions
0000e00 0000 00000 o]
: :

COEFFICIENT OF PRESCRIPTIVENESS!

Given a data-driven policy x(-) and distribution F

distance from full information

A

Bel1(+(C), €)] - Erlmin h(+',€)]
Erfh(3,&)] — Erlmin h(7, €)]

Pe(x()) =1 -

distance from no to full information

where x € argmin, [Ez[h(x, )] with F as the in-sample empirical
distribution that puts equal weights on each observed data
point (i.e. the solution of SAA)

"Bertsimas and Kallus, MS, 2020
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COEFFICIENT OF PRESCRIPTIVENESS
distance from full information

Brlh(x(0). €)) ~ Erlminh(¥ &)

Pr(x(+):=1-— _ .
P(x() Erlh(%, €)] — Br[min h(, )]
x'eX
distance from no to full information
Properties
» Pr=1:

x(+) is fully anticipative
in terms of €.

Cg\
-
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COEFFICIENT OF PRESCRIPTIVENESS

distance from full information

Belh(+(0), €)] — Erlmin h(¥ €)
Erfi(3, )] — Erlmin i, €]

Pr(x()) i=1-

distance from no to full information

Properties

» Pr=1: » Small Pr ~ 0:
x(+) is fully anticipative x(+) is not able to exploit
in terms of €. information.

@\ I
- 9
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RISING POPULARITY OF THE COEFFICIENT OF PRESCRIPTIVENESS

Recent papers exploiting Pr for evaluating the superiority of
the contextual optimization methods:

» Bertsimas et al. [2016]

Inventory management in the era of big data

» Bertsimas and Kallus [2020]

From predictive to prescriptive analytics

» Notz and Pibernik [2022]

Prescriptive analytics for flexible capacity management

» Kallus and Mao [2022]

Stochastic optimization forests
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RISING POPULARITY OF THE COEFFICIENT OF PRESCRIPTIVENESS

Recent papers exploiting Pr for evaluating the superiority of
the contextual optimization methods:

» Bertsimas et al. [2016]

Inventory management in the era of big data

» Bertsimas and Kallus [2020]

From predictive to prescriptive analytics

» Notz and Pibernik [2022]

Prescriptive analytics for flexible capacity management

» Kallus and Mao [2022]

Stochastic optimization forests

Can we optimize directly the coefficient of
prescriptiveness in a way that is robust
to distribution misspecification?

8/18



Introduction Robust Data-driven Prescriptiveness Optimization Numerical Experiments Conclusions
0000000 9000 00000 o

DISTRIBUTIONALLY ROBUST PRESCRIPTIVENESS
COMPETITIVE RATIO (DRPCR)

inf ) =
max inf Pr(x(-))

o Erh(x(€),€)] — Erfmingey h(x, €)]
max 10 1~ "B hG, £)] — Ermingcy h(x, €)]

» Under weak conditions the optimal value of DRPCR
is necessarily in the interval [0, 1].
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EPIGRAPH FORMULATION FOR DRPCR

DRPCR is equivalent to
max vy (1a)
gl
subject to  min Q(x(-),y) <0 (1b)
x(-)EH
0<~y<1, (1)
where
Q(x(),7) :=sup Ep [h(x((), &)— ((1 —7)h(x, §)+~ min h(x, 5))}
FeD xXex

is a convex increasing function of ~.
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EPIGRAPH FORMULATION FOR DRPCR

DRPCR is equivalent to
max vy (1a)
v
subjectto  min Q(x(-),v) <0 (1b)
x(-)EH
0<~y<1, (1)
where
Q(x(+),v) :=sup Er [h(x(C), &)— ((1 —Y)h(x, &)+ rpinh(x', 5))}
FeD x'ex

is a convex increasing function of ~.

Idea to solve the problem: use the bisection method to bisect over
and solve the LHS of (1b) to see whether it satisfies the constraint!
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CHOICE OF THE AMBIGUITY SET

Assumption

There is a discrete distribution F, with {Cutwen, and {€,, }weq, as

the set of distinct scenarios for ¢ and & respectively, such that the
distribution set D takes the form of the “nested CVaR ambiguity set”
with respect to Pr and defined as

- re | BrC=¢) =P =C)Wwen,
D(F7 a) = M(Q( % Q{) ]P)F(E - gw/|Cw) < (1 (1 _vi))epfﬂ(f’ ;/&ew/slliw)

where M(Q¢ x ) is the set of all distributions supported on over
the jOiTlt space {Cw }wGQ( X {Ew}weﬂg-
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» No ambiguity in the marginal distribution of the observed
random variable ¢
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CHOICE OF THE AMBIGUITY SET

Assumption

There is a discrete distribution F, with {Cutwen, and {€,, }weq, as

the set of distinct scenarios for ¢ and & respectively, such that the
distribution set D takes the form of the “nested CVaR ambiguity set”
with respect to Pr and defined as

- re | BrC=¢) =P =C)Wwen,
D(F7 a) = M(Q( % Q{) ]P)F(E - gw/|Cw) < (1 (1 _vi))epl;gi ;/&ew/slliw)

where M(Q¢ x ) is the set of all distributions supported on over
the jOiTlt space {Cw }wGQ( X {Ew}weﬂg-

» No ambiguity in the marginal distribution of the observed
random variable ¢
» Ambiguity solely on the unobserved random variable &

and is sized using the parameter «
11/18
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DRPCR UNDER NESTED CVAR

Corollary

Under the nested CVaR ambiguity set we have
min Q(x(-),7) = D Pr(¢ = ¢,)u(7)
A wEQ,
where the optimal value of ¢,(7y) can be obtained through solving the
following optimization problem

, 1
xER a0 P 1 o Z Pr(€ = €u/IC = Cu)ser
w'EQg
subjectto s > h(x,€,) — ((1 —y)h(x,€,) + ’Yn,ﬂelg h(x/,gw,)>

—t, V' € Qg.

This problem can be reduced to a linear program when X is polyhedral and
h(x,&,,) is linear programming representable for all w' € Q.
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SHORTEST PATH PROBLEM

Workday Holiday ¢

x
R Average traveltime o
12min 39sec
HisToRIC Range o
CULTURAL, [8min 23sec, 19min 4sec]
- 8 2020-3-1 - 2020-3-31 - Every day, Daily Average
& Average travel times by period
N 3 CENTRAL E
GiTY EAsT
Travel Times (mine)
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SHORTEST PATH PROBLEM WITH CSO OBJECTIVE

x*(¢) € argmin Eﬁs\@‘ [ng],

xeX
Xip€ 10 1) V(i j) € A
X ={xeRM Z (if)eAXGf) ~ Zj:(j,z’)eA X =1 %fz' =0
Z (i)eA X)) Zj:(j,i)eA X = —1 1f.1 =d
Z (if)edXi) — SigeaXin =0 Vi€ V\{o, d}
» A directed graph defined as G = (V, .A), where V denotes the set of nodes and

A €V x Vis the set of arcs.

&(i,j) denotes the travel time of a directed path from node i to node ;.

x(jy = 1 if we decide to travel from node i to node j and x(; j, = 0 otherwise.
155‘4 denotes the conditional distribution inferred from the training dataset.
Adapt to the graph (G) structure employed in Kallus and Mao (2022)

vvyyvyy
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ALTERNATIVE METHODS TO DRPCR

» Contextual Stochastic Optimization (CSO)
x"(¢) € argminE;_ [x"¢]
xEX

15/18



Introduction Robust Data-driven Prescriptiveness Optimization Numerical Experiments Conclusions
0000000 0000 0000 o
| |

ALTERNATIVE METHODS TO DRPCR

» Contextual Stochastic Optimization (CSO)
x"(¢) € argminE;_ [x"¢]
xEX

» Distributionally Robust Contextual Stochastic Optimization (DRCSO)

x*(¢) € arg mi)rg sup Er, [x"¢]
YEX Fe €D (Ee o)

15/18



Introduction Robust Data-driven Prescriptiveness Optimization Numerical Experiments Conclusions
0000000 0000 0000 o
| |

ALTERNATIVE METHODS TO DRPCR

» Contextual Stochastic Optimization (CSO)
x"(¢) € argminE;_ [x"¢]
xEX

» Distributionally Robust Contextual Stochastic Optimization (DRCSO)

x*(¢) € arg mi)rg sup Er, [x"¢]
YEX Fe €D (Ee o)

» Distributionally Robust Contextual Regret Optimization (DRCRO)

x"(¢) € argmin sup Er, x'¢— min X' Te
€% FejceD(Feic0) vex
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OUT-OF-SAMPLE COEFFICIENT OF PRESCRIPTIVENESS
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AVERAGE L-1 NORM DISTANCE TO SAA SOLUTION
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TAKE-AWAY

» Under the nested CVaR ambiguity set,
optimization of the coefficient of
prescriptiveness in the DRO context leads to
the special case of solving a series of linear
programs.

» Roughly speaking, when the mean of the
unobserved random variable is exposed to a
distribution shift, the out-of-sample
coefficients of prescriptiveness achieved by
DRPCR policies are higher than those
obtained by the alternative methods.
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