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STOCHASTIC VS. CONTEXTUAL OPTIMIZATION

Stochastic Programming

(SP) x∗ ∈ argmin
x∈X

EF

[
h(x, ξ)

]

F
re
q
u
e
n
c
y

Traffic

▶ ξ traffic demand with distribution F
▶ x shortest path route
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STOCHASTIC VS. CONTEXTUAL OPTIMIZATION

Contextual Stochastic Optimization

(CSO) x∗(ζ) ∈ argmin
x∈X

EF

[
h(x, ξ)

∣∣∣∣ζ]
Workday Holiday

unconditio
nal distr

ibution

conditio
n on Workd

ay

conditio
n on Holiday

▶ ξ traffic demand
▶ ζ ∈ {workday,holiday} side information
▶ F is the joint distribution (ζ, ξ), Fξ|ζ conditional

distribution
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STOCHASTIC VS. CONTEXTUAL OPTIMIZATION

Contextual Stochastic Optimization

(CSO) x∗(ζ) ∈ argmin
x∈X

EF

[
h(x, ξ)

∣∣∣∣ζ]
▶ F(ξ|ζ) not known in practice
▶ Estimate conditional distribution F̂(ξ|ζ), e.g.,

KDE, random forest, etc.
▶ Can we trust the estimates?

Distributionally Robust Contextual Stochastic Optimization

(DRCSO) x∗(ζ) ∈ argmin
x∈X

sup
F∈D

EF

[
h(x, ξ)

∣∣∣∣ζ]
where D is admissible set of distributions (ambiguity set)
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RELEVANT LITERATURE

Ban and Rudin [2019] The big data newsvendor: Practical insights from machine learning

▶ Conditional Stochastic Optimization (CSO)
▶ Nadaraya-Watson Kernel regression
▶ Decision rules

Hannah et al. [2010] Nonparametric density estimation for stochastic optimization with an observable

state variable

▶ Conditional Stochastic Optimization (CSO)
▶ Nadaraya-Watson Kernel regression
▶ Dirichlet process mixture models

Bertsimas and Van Parys [2022] Bootstrap robust prescriptive analytics

▶ Distributionally Robust Conditional Stochastic Optimization (DRCSO)
▶ Nadaraya-Watson Kernel regression
▶ Nearest neighbors learning

Wang et al. [2021] Distributionally robust prescriptive analytics with Wasserstein distance

▶ Distributionally Robust Conditional Stochastic Optimization (DRCSO)
▶ Nadaraya-Watson Kernel regression

=⇒ How to compare different methods?
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COEFFICIENT OF PRESCRIPTIVENESS1

“Recently proposed performance measure”

Given a data-driven policy x(·) and distribution F

PF(x(·)) := 1 − EF[h(x(ζ), ξ)]− EF[minx′∈X h(x′, ξ)]
EF[h(x̂, ξ)]− EF[minx′∈X h(x′, ξ)]

,

where x̂ ∈ argminx EF̂[h(x, ξ)] with F̂ as the in-sample empirical
distribution that puts equal weights on each observed data
point (i.e. the solution of SAA)

1Bertsimas and Kallus, MS, 2020
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Given a data-driven policy x(·) and distribution F

PF(x(·)) := 1 −

distance from full information︷ ︸︸ ︷
EF[h(x(ζ), ξ)]− EF[min

x′∈X
h(x′, ξ)]

EF[h(x̂, ξ)]− EF[min
x′∈X

h(x′, ξ)]︸ ︷︷ ︸
distance from no to full information
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COEFFICIENT OF PRESCRIPTIVENESS

PF(x(·)) := 1 −

distance from full information︷ ︸︸ ︷
EF[h(x(ζ), ξ)]− EF[min

x′∈X
h(x′, ξ)]

EF[h(x̂, ξ)]− EF[min
x′∈X

h(x′, ξ)]︸ ︷︷ ︸
distance from no to full information

Properties

▶ PF = 1:
x(·) is fully anticipative
in terms of ξ.

▶ Small PF ≈ 0:
x(·) is not able to exploit
information.
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RISING POPULARITY OF THE COEFFICIENT OF PRESCRIPTIVENESS

Recent papers exploiting PF for evaluating the superiority of
the contextual optimization methods:

▶ Bertsimas et al. [2016]
Inventory management in the era of big data

▶ Bertsimas and Kallus [2020]
From predictive to prescriptive analytics

▶ Notz and Pibernik [2022]
Prescriptive analytics for flexible capacity management

▶ Kallus and Mao [2022]
Stochastic optimization forests

Can we optimize directly the coefficient of
prescriptiveness in a way that is robust

to distribution misspecification?
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DISTRIBUTIONALLY ROBUST PRESCRIPTIVENESS

COMPETITIVE RATIO (DRPCR)

max
x(·)∈H

inf
F∈D

PF(x(·)) :=

max
x(·)∈H

inf
F∈D

1 − EF[h(x(ζ), ξ)]− EF[minx′∈X h(x′, ξ)]

EF[h(x̂, ξ)]− EF[minx′∈X h(x′, ξ)]

▶ Under weak conditions the optimal value of DRPCR
is necessarily in the interval [0, 1].
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EPIGRAPH FORMULATION FOR DRPCR

DRPCR is equivalent to
max
γ

γ (1a)

subject to min
x(·)∈H

Q(x(·), γ) ≤ 0 (1b)

0 ≤ γ ≤ 1, (1c)

where

Q(x(·), γ) := sup
F∈D

EF

[
h(x(ζ), ξ)−

(
(1−γ)h(x̂, ξ)+γ min

x′∈X
h(x′, ξ)

)]
is a convex increasing function of γ.

Idea to solve the problem: use the bisection method to bisect over γ
and solve the LHS of (1b) to see whether it satisfies the constraint!
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CHOICE OF THE AMBIGUITY SET

Assumption
There is a discrete distribution F̄, with {ζω}ω∈Ωζ

and {ξω}ω∈Ωξ
as

the set of distinct scenarios for ζ and ξ respectively, such that the
distribution set D takes the form of the “nested CVaR ambiguity set”
with respect to PF̄ and defined as

D̄(F̄, α) :=

 F ∈
M(Ωζ × Ωξ)

∣∣∣∣∣∣
PF(ζ = ζω) = PF̄(ζ = ζω) ∀ω ∈ Ωζ ,
PF(ξ = ξω′ |ζω) ≤ (1/(1 − α))PF̄(ξ = ξω′ |ζω)

∀ω ∈ Ωζ , ω
′ ∈ Ωξ


where M(Ωζ × Ωξ) is the set of all distributions supported on over
the joint space {ζω}ω∈Ωζ

× {ξω}ω∈Ωξ
.

▶ No ambiguity in the marginal distribution of the observed
random variable ζ

▶ Ambiguity solely on the unobserved random variable ξ
and is sized using the parameter α

.
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DRPCR UNDER NESTED CVAR

Corollary

Under the nested CVaR ambiguity set we have

min
x(·)∈H

Q(x(·), γ) =
∑
ω∈Ωζ

PF̄(ζ = ζω)ϕω(γ)

where the optimal value of ϕω(γ) can be obtained through solving the
following optimization problem

min
x∈X ,t,s≥0

t +
1

1 − α

∑
ω′∈Ωξ

PF̄(ξ = ξω′ |ζ = ζω)sω′

subject to sω′ ≥ h(x, ξω′)−
(
(1 − γ)h(x̄, ξω′) + γ min

x′∈X
h(x′, ξω′)

)
−t , ∀ω′ ∈ Ωξ.

This problem can be reduced to a linear program when X is polyhedral and
h(x, ξω′) is linear programming representable for all ω′ ∈ Ωξ.
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SHORTEST PATH PROBLEM

Workday Holiday

unconditio
nal distr

ibution

conditio
n on Workd
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conditio
n on Holiday
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SHORTEST PATH PROBLEM WITH CSO OBJECTIVE

x∗(ζ) ∈ argmin
x∈X

EF̂ξ|ζ
[x⊤ξ],

X =

x ∈ R|A|

∣∣∣∣∣∣∣∣∣
x(i,j)∈ {0, 1}∑

j:(i,j)∈A x(i,j) −
∑

j:(j,i)∈A x(j,i) = 1∑
j:(i,j)∈A x(i,j) −

∑
j:(j,i)∈A x(j,i) = −1∑

j:(i,j)∈A x(i,j) −
∑

j:(j,i)∈A x(j,i) = 0

∀(i, j) ∈ A
if i = o
if i = d
∀i ∈ V \ {o, d}

 ,

▶ A directed graph defined as G = (V, A), where V denotes the set of nodes and
A ∈ V × V is the set of arcs.

▶ ξ(i,j) denotes the travel time of a directed path from node i to node j.
▶ x(i,j) = 1 if we decide to travel from node i to node j and x(i,j) = 0 otherwise.
▶ F̂ξ|ζ denotes the conditional distribution inferred from the training dataset.
▶ Adapt to the graph (G) structure employed in Kallus and Mao (2022)
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ALTERNATIVE METHODS TO DRPCR

▶ Contextual Stochastic Optimization (CSO)
x∗(ζ) ∈ argmin

x∈X
EF̂ξ|ζ

[x⊤ξ]

▶ Distributionally Robust Contextual Stochastic Optimization (DRCSO)
x∗(ζ) ∈ argmin

x∈X
sup

Fξ|ζ∈D̄(F̂ξ|ζ ,α)

EFξ|ζ [x
⊤ξ]

▶ Distributionally Robust Contextual Regret Optimization (DRCRO)
x∗(ζ) ∈ argmin

x∈X
sup

Fξ|ζ∈D̄(F̂ξ|ζ ,α)

EFξ|ζ [x
⊤ξ − min

x′∈X
x′⊤ξ]
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OUT-OF-SAMPLE COEFFICIENT OF PRESCRIPTIVENESS
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AVERAGE L-1 NORM DISTANCE TO SAA SOLUTION
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TAKE-AWAY

▶ Under the nested CVaR ambiguity set,
optimization of the coefficient of
prescriptiveness in the DRO context leads to
the special case of solving a series of linear
programs.

▶ Roughly speaking, when the mean of the
unobserved random variable is exposed to a
distribution shift, the out-of-sample
coefficients of prescriptiveness achieved by
DRPCR policies are higher than those
obtained by the alternative methods.
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