

On the Recoverability of Causal Relations from Temporally Aggregated I.I.D. Data

Kun Zhang^{1,3} Shunxing Fan¹ Mingming $Gong^{2,1}$ ¹Mohamed bin Zayed University ²The University of Melbourne

of Artificial Intelligence

³Carnegie Mellon University

What is temporal aggregation? Summation/Averaging/... $\sum_{t=1}^{k} x_t, \frac{1}{k} \sum_{t=1}^{k} x_t, \frac{1}{\sqrt{k}} \sum_{t=1}^{k} x_t \dots$

Temporal aggregation is so common in real-world observation: Daily/Weekly/Monthly stock prices, hourly/daily/monthly temperature, GDP, electricity consumption...

Temporal aggregation in non-temporal causal discovery

Instantaneous causation:

"temporal aggregation is a realistic, plausible, and well-known reason for observing apparent instantaneous causation" ---Granger, C. W. (1988). Some recent development in a concept of causality. *Journal of econometrics*

Temporal aggregation in Non-temporal causal discovery

Instantaneous causation:

"temporal aggregation is a realistic, plausible, and well-known reason for observing apparent instantaneous causation" ---Granger, C. W. (1988). Some recent development in a concept of causality. *Journal of econometrics*

• Cyclic causation:

"The observed variable is the vector $\bar{\mathbf{x}}[t]$, defined as the average of \mathbf{x} over the observation period starting at t:"

$$ar{\mathbf{x}}[t] \equiv rac{1}{n}\sum_{k=1}^n \mathbf{x}[t+k\Delta heta]$$

---Lacerda, G., Spirtes, P. L., Ramsey, J., & Hoyer, P. O. (2008). Discovering cyclic causal models by independent components analysis. UAI 2008

Is the causal relationship consistent across different observational levels?

 X_t is the cause of Y_t , but \overline{X} may not be the cause of \overline{Y} .

Linear

$$Y_t = aX_t + N_t$$

Linear

$$Y_t = aX_t + N_t$$

Thanks to additivity and homogeneity of linear transformation:

$$\overline{Y} = a\overline{X} + \overline{N}$$

Gong, M., Zhang, K., Schölkopf, B., Glymour, C., & Tao, D. (2017, August). Causal discovery from temporally aggregated time series. UAI 2017

Ground truth:

Accuracy in non-linear case

 Z_1

 $\left(H_{1} \right)$

 Y_1

 X_1

Accuracy in linear case

Many real-world observational data can be considered as the result of aggregation from fine-grained, micro-level, non-linear causal processes. How can we trust the real-world results from non-linear causal discovery methods given that the causal relationship may be inconsistent across different levels?

Our work focuses on:

- When will the causal discovery fail or succeed on aggregated data?
- How the causal discovery results go wrong?

Definition 3.2 (Functional Consistency Regarding Additive Noise). Consider the bivariate aligned model defined in 3.1 incorporates additive noise: $Y_t = f(X_t) + N_{Y,t}$. This process exhibits functional consistency regarding additive noise if there exists a function \hat{f} such that the aggregated variables can be represented as $\overline{Y} = \hat{f}(\overline{X}) + N$, where N is independent of \overline{X} , and such \hat{f} exists only in the correct causal direction.

Functional Consistency

Theorem 3.3 (Construction of \hat{f}). If such \hat{f} , as defined in Definition 3.2, exists, then \hat{f} must take the form:

$$\hat{f}(T) = \mathbb{E}\left(\sum_{i=1}^{k} f(X_i) \mid \overline{X} = T\right) + c, \qquad (2)$$

where c is any constant (which can be incorporated into the noise term) and the expression $\mathbb{E}(\cdot \mid \overline{X} = T)$ denotes the conditional expectation. For simplicity, we set c = 0. Consequently, this implies:

$$\mathbb{E}(\hat{f}(\overline{X})) = \mathbb{E}\left(\sum_{i=1}^{k} f(X_i)\right).$$
(3)

Theorem 3.4 (Necessary and Sufficient Condition). The necessary and sufficient condition for the existence of the additive noise causal model defined in Definition 3.2 is that $N = \sum_{i=1}^{k} N_{Y,i} + \left(\sum_{i=1}^{k} f(X_i) - \hat{f}(\overline{X})\right)$ is independent of \overline{X} , where \hat{f} is defined by Eq. 2.

Functional Consistency

Figure 7. Linear Case: Direct LiNGAM Correction Rate with Different Aggregation Factors k. The blue area represents the standard deviation. The red line represents the random guess baseline.

Figure 8. Nonlinear Case: ANM Correction Rate with Different Aggregation Factors k. The blue area represents the standard deviation.

Conditional Independence Consistency (PC, FCI...)

.

$(I) \ \overline{X} \perp\!\!\!\perp \overline{Y}, (II) \ \overline{Y} \perp\!\!\!\perp \overline{Z}, (III) \ \overline{X} \perp\!\!\!\perp \overline{Z}, (IV) \\ \overline{X} \perp\!\!\!\perp \overline{Y} \mid \overline{Z}, (V) \ \overline{Y} \perp\!\!\!\perp \overline{Z} \mid \overline{X}, (VI) \ \overline{X} \perp\!\!\!\perp \overline{Z} \mid \overline{Y}.$

Rejection Rate for CIT:

(b) Fork Structure

$X_t \to Y_t$	$Y_t \to Z_t$	Ι	II	III	IV	V	VI
Linear	Linear	100%	100%	100%	100%	100%	5%
Nonlinear	Linear	92%	100%	84%	92%	100%	5%
Linear	Nonlinear	100%	93%	85%	100%	93%	5%
Nonlinear	Nonlinear	92%	93%	72%	86%	87%	58%

(I) $\overline{X} \perp\!\!\!\perp \overline{Y}$, (II) $\overline{Y} \perp\!\!\!\perp \overline{Z}$, (III) $\overline{X} \perp\!\!\!\perp \overline{Z}$, (IV) $\overline{X} \perp\!\!\!\perp \overline{Y} \mid \overline{Z}, (V) \overline{Y} \perp\!\!\!\perp \overline{Z} \mid \overline{X}, (VI) \overline{X} \perp\!\!\!\perp \overline{Z} \mid \overline{Y}.$

Rejection Rate for CIT:

(c) Collider Structure

$X_t \to Y_t$	$Y_t \rightarrow Z_t$	Ι	Π	III	IV	V	VI
Linear	Linear	100%	100%	5%	100%	100%	99%
Nonlinear	Linear	95%	89%	5%	96%	91%	51%
Linear	Nonlinear	90%	95%	5%	91%	96%	48%
Nonlinear	Nonlinear	81%	81%	6%	83%	81%	29%

PC algorithm:

Thanks for listening!