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Bayes’ law

Problem:

Hidden random variable X

Observed random variable Y

What is the conditional probability distribution of X given Y ? (posterior)

Bayes’ law: PX|Y =
PXPY |X

PY

Simple to express, but difficult to implement numerically
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Bayes’ law
Challenges of importance sampling

Example:

X ∼ N (0, 1)

Y =
1

2
X2 + ϵW

PX|Y =1 =?

Importance sampling (IS):

Xi i.i.d∼ N (0, 1)

wi ∝ P (Y = 1|Xi)

PX|Y =1 ≈
N∑
i=1

wiδXi

−3 −2 −1 0 1 2 3
X

PX|Y=1

small noise regime: ϵ → 0

This is the main reason for the curse of dimensionality of IS-based particle filters
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Conditioning with transport maps

Xi ∼ PX −→ T (Xi, y) ∼ PX|Y =y

Suppose we have particles that represent samples from PX

We like to generate new set of particles that represent samples from PX|Y

How to numerically find the map T in a general setting?
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Conditioning with optimal transport map
Illustrative example

−→

?−−−−→

Mohammad Al-Jarrah 4 / 5 Mohammad Al-Jarrah



Conditioning with optimal transport map
Illustrative example

−→

?−−−−→

Mohammad Al-Jarrah 4 / 5 Mohammad Al-Jarrah



Conditioning with optimal transport map
Illustrative example

(T (X,Y ),Y )−−−−−−−−→

?−−−−→

Mohammad Al-Jarrah 4 / 5 Mohammad Al-Jarrah



Conditioning with optimal transport map
Illustrative example

(T (X,Y ),Y )−−−−−−−−→

?−−−−→

Mohammad Al-Jarrah 4 / 5 Mohammad Al-Jarrah



Conditioning with optimal transport map
Illustrative example

(T (X,Y ),Y )−−−−−−−−→

−−−−−−−−−−−−−→

Mohammad Al-Jarrah 4 / 5 Mohammad Al-Jarrah



Conditioning with optimal transport map
Illustrative example

(T (X,Y ),Y )−−−−−−−−→

−−−−−−−−−−−−−→

small noise limit
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Conditioning with optimal transport map
Variational formulation of the Bayes’ law

Bayes’ law: PX|Y =
PXPY |X

PY

= T (·;Y )#PX

where T is the solution to

max
f∈c-Concavex

min
T∈M(PX⊗PY )

E
[
f(X,Y )− f(T (X,Y ), Y ) +

1

2
∥T (X,Y )−X∥2

]

Features:

sample-based algorithm

stochastic optimization

using neural network

Overcome challenges:

degenerate likelihood

Multimodal distribution

high dimension problem
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