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Bayes’ law

Problem:

= Hidden random variable X
= Observed random variable Y

= What is the conditional probability distribution of X given Y'? (posterior)

Px Py|x

Bayes’ law: Px|y = =
Y

Simple to express, but difficult to implement numerically
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Bayes’ law
Challenges of importance sampling

Example:
= X ~N(0,1)
=Y = %Xz +eW

L] PX\Y:l =7

Py Likelihood

Pxiy=1
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Bayes’ law
Challenges of importance sampling

Example: Importance sampling (IS):
® X ~N(0,1) = XA M0, 1)
-Y:%Xz—i-eW = w' o P(Y =1]X")
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Px Likelihood

o Particle weight

1 2 3 R T—— 1 2 3

o
X

small noise regime: € — 0

Pxjy=1

o Particle

This is the main reason for the curse of dimensionality of I1S-based particle filters
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Conditioning with transport maps
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Conditioning with transport maps

X'~ Px — T(X',y) ~ Pxjy=y

m Suppose we have particles that represent samples from Px

= We like to generate new set of particles that represent samples from Px|y

How to numerically find the map 7" in a general setting?
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Conditioning with optimal transport map
lllustrative example

Px ® Py
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Conditioning with optimal transport map
Variational formulation of the Bayes' law

PxPy|x
Py
=T(;Y)xPx

Bayes’ law: Px|y =

where T is the solution to

max

) - R i
E X,Y)—- f(T(X,Y),Y —|T(X,Y) - X
P fX,Y) = f(T(X,Y),Y) + 5 IT(X,Y) l

Features: Overcome challenges:
m sample-based algorithm m degenerate likelihood
m stochastic optimization = Multimodal distribution
m using neural network = high dimension problem
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