CML ational Conference Chine Learning Yuhang He¹, Anoop Cherian², Gordon Wichern², Andrew Markham¹

¹Department of Computer Science, University of Oxford, UK ²Mitsubishi Electric Research Laboratories (MERL), Cambridge, MA, US

Changes for the Better

- **Goal**: Learn a spatially continuous neural RIR room acoustics field, so as to be able to
- 1. predict spatial acoustic effects from,
- 2. arbitrary source position to arbitrary receiver position.
- *by* sending and receiving sound at discrete positions.

4. Room Acoustics Physical Principles

- Globality: sound propagation relates to whole room.
 Reciprocity: RIR is the same if source/receiver swaps.
 Superposition: multiple sound sources equals to adding each one together.
- 4. **Sound Independence**: learned neural RIR field is independent on sound source class and existence.

5. Algorithm Pipeline

2. Challenges

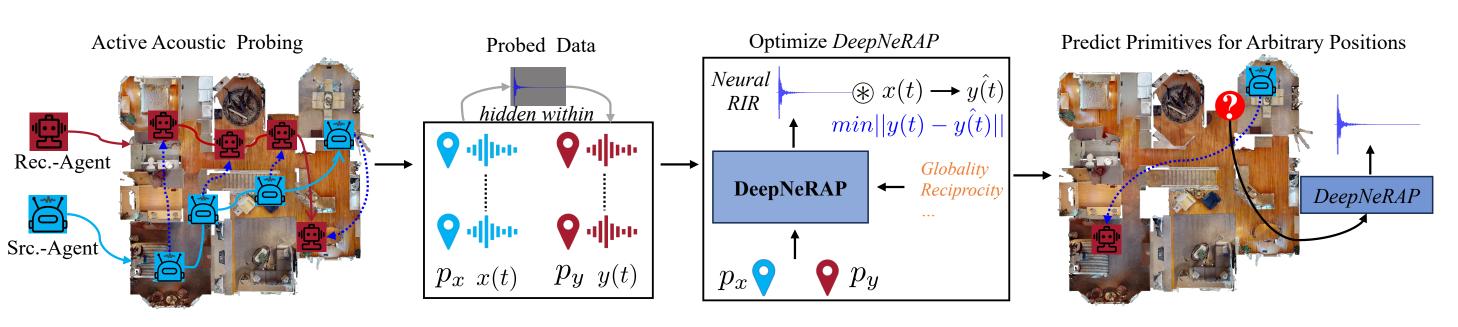
Room impulse response (RIR) is

- 1. highly non-smooth and chaotic, lengthy in points.
- position-sensitive, smaller position change leads to large RIR change.

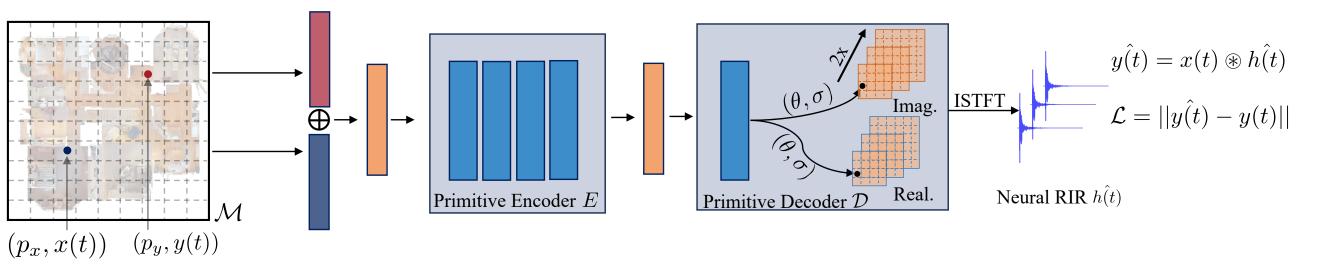
Measuring RIR in real-world,

- 1. is difficult and inefficient (time-consuming).
- 2. nonscalable, need re-collect once position changes.

3. Our Method: DeepNeRAP



1. one source-agent and one receiver-agent.



- Extract multi-scale position aware feature (*globality*).
- 2. Element-wise add two features (*reciprocity*).
- 3. Predict neural RIR in frequency domain (real/imag).

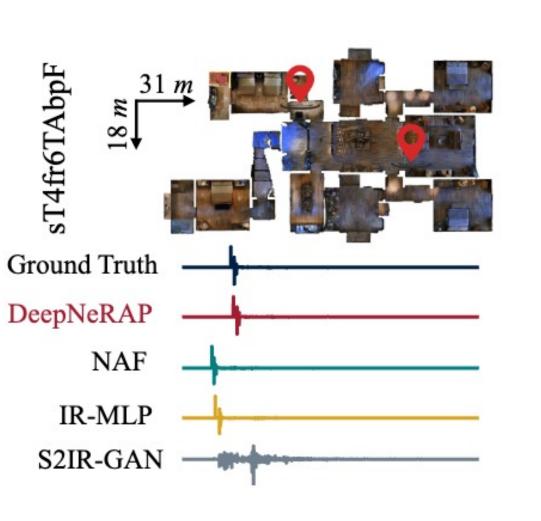
6. Experiment Result

1. **Dataset**: Synthetic: SoundSpaces 2.0 [1] + MP3D [2], Real: MeshRIR data [3].

2. Quantitative Result (MP3D):

Table 1. Quantitative Result on Matterport3D Dataset. t-MSE: 10^{-7} , f-MSE: 10^{-2} .							
Method	Neural RIR						Speech
	t-MSE (\downarrow)	$SDR(\uparrow)$	T_{60} Error (\downarrow)	f-MSE (\downarrow)	$PSNR(\uparrow)$	SSIM (\uparrow)	PSEQ (\uparrow)
NAF (Luo et al., 2022)	1.01 ± 0.27	5.16 ± 0.09	7.84 ± 0.40	4.09 ± 0.00	15.17 ± 3.57	0.996 ± 0.00	1.40 ± 0.41
IR-MLP (Richard et al., 2022)	1.02 ± 0.32	4.09 ± 0.10	8.68 ± 0.12	5.68 ± 0.01	13.67 ± 3.51	0.994 ± 0.01	1.40 ± 0.14
S2IR-GAN (Ratnarajah et al., 2023)	1.09 ± 0.27	3.81 ± 0.10	9.19 ± 0.02	6.55 ± 0.12	12.98 <u>+</u> 3.46	0.994 ± 0.01	1.38 ± 0.17
DeepNeRAP	$\textbf{0.93} \pm \textbf{0.34}$	6.62 ± 0.12	6.04 ± 0.08	1.68 ± 0.02	18.95 ± 3.02	0.998 ± 0.00	1.53 ± 0.41

- 2. walk around the room independently, sending and 3. Qualitative Result:
 - receiving sine-sweep sound at different positions.
- 3. learn neural RIR in a self-supervised manner.
- 4. neural RIR is optimized by minimizing discrepancy between neural RIR effected receiver sound and recorded receiver sound.
- 5. able to predict neural RIR for new arbitrary sourcereceiver positions.



Conclusion:

1. Novel and simple neural RIR learning framework.

2. Physical principles (interpretable result) informed network design.
 3. SOTA performance.

[1] Changan Chen et al., SoundSpaces 2.0: A Simulation Platform for Visual-Acoustic Learning. NeurIPS 2022.

[2] Angel Chang et al, Matterport3D: Learning from RGB-D Data in Indoor Environments. 3DV 2017.

[3] Shoichi Koyama et al., MeshRIR: A Dataset of Room Impulse Responses on Meshed Grid Points For Evaluating Sound Field Analysis and Synthesis Methods. WASPAA. 2021.