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Context

e Semi-supervised anomaly detection (AD) is
a good alternative to standard supervised

models when there is extreme imbalancing
between classes.

e General AD methods offer good performance
on unstructured data.

e Current best performing AD methods for tabular
data take into account its particular
structure.

e Recent works on deep learning for tabular
data have highlighted that leveraging both
inter-feature and inter-sample relations
may foster performance.
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Method

Mask-reconstruction

Train a model ¢y to reconstruct the masked fea-
tures of normal samples.

e Sample vector x € R?. binary mask vector m € R

o x™ x° € RY represent respectively the masked and
unmasked entries of sample x

X"=m O X

x’=(1lg—m)©®x
e The training objective consists in minimizing
min d(x" ¢
0c6 Z (X 7¢9(X ))7
XGDtrafm
where ¢p(x°) € R? denotes the reconstructed masked

features of x by the model, and d(.,.) a distance
measure.

Non-Parametric Transtormer

e We rely on Non-Parametric Transformers
(NPT) as our core model ¢y.

e NPT enables leveraging both inter-feature
and inter-sample relations.
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NPT-AD
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NPT-AD Inference Pipeline

(a) Mask j is applied to each validation sample. We construct a matrix X composed of the
masked validation samples and the whole unmasked training set.

(b) We feed X to the Non-Parametric Transformer (NPT, which tries to reconstruct the
masked features for each validation sample

(c) We compute the reconstruction error that we later aggregate in the NPT-AD score

Experiment

e We evaluate our method on a benchmark of 31 tabular datasets.

e We compare to both deep and non-deep AD methods and observe that we obtain SOTA
performance
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On Machine Learning

Is combining dependencies useful ?

Feature-Feature
dependencies

Sample-sample
dependencies

"o Mask-KNN: mask reconstruction only using
sample-sample dependencies.

e Transformer: mask reconstruction only using
feature-feature dependencies.
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Transformer Mask-KNN NPT-AD

K1 H7.4 D7.D 68.8
AUROC 33.0 54.5 89.8

Combining dependencies boosts AD performances!

Robustness to Data Contamination

e What happens when the training set contains
anomalies?’

e NPT-AD’s performance deteriorate starting from
5% contamination share.
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