

Beyond Individual Input for Deep Anomaly Detection on Tabular Data

Hugo Thimonier, Fabrice Popineau, Arpad Rimmel and Bich-Liên Doân

Université Paris-Saclay, CNRS, CentraleSupélec, Laboratoire Interdisciplinaire des Sciences du Numérique, 91190, Gif-sur-Yvette, France.

Context

- Semi-supervised anomaly detection (AD) is a good alternative to standard supervised models when there is extreme imbalancing between classes.
- General AD methods offer **good performance** on unstructured data.
- Current best performing AD methods for tabular data take into account its particular structure.
- Recent works on deep learning for tabular data have highlighted that leveraging both inter-feature and inter-sample relations may foster performance.

Method

Mask-reconstruction

Train a model ϕ_{θ} to reconstruct the **masked features of normal samples**.

- Sample vector $\mathbf{x} \in \mathbb{R}^d$, binary mask vector $\mathbf{m} \in \mathbb{R}^d$.
- $\mathbf{x}^m, \mathbf{x}^o \in \mathbb{R}^d$ represent respectively the masked and unmasked entries of sample \mathbf{x}

$$\mathbf{x}^m = \mathbf{m} \odot \mathbf{x}$$
 $\mathbf{x}^o = (\mathbf{1}_d - \mathbf{m}) \odot \mathbf{x}$

• The **training objective** consists in minimizing

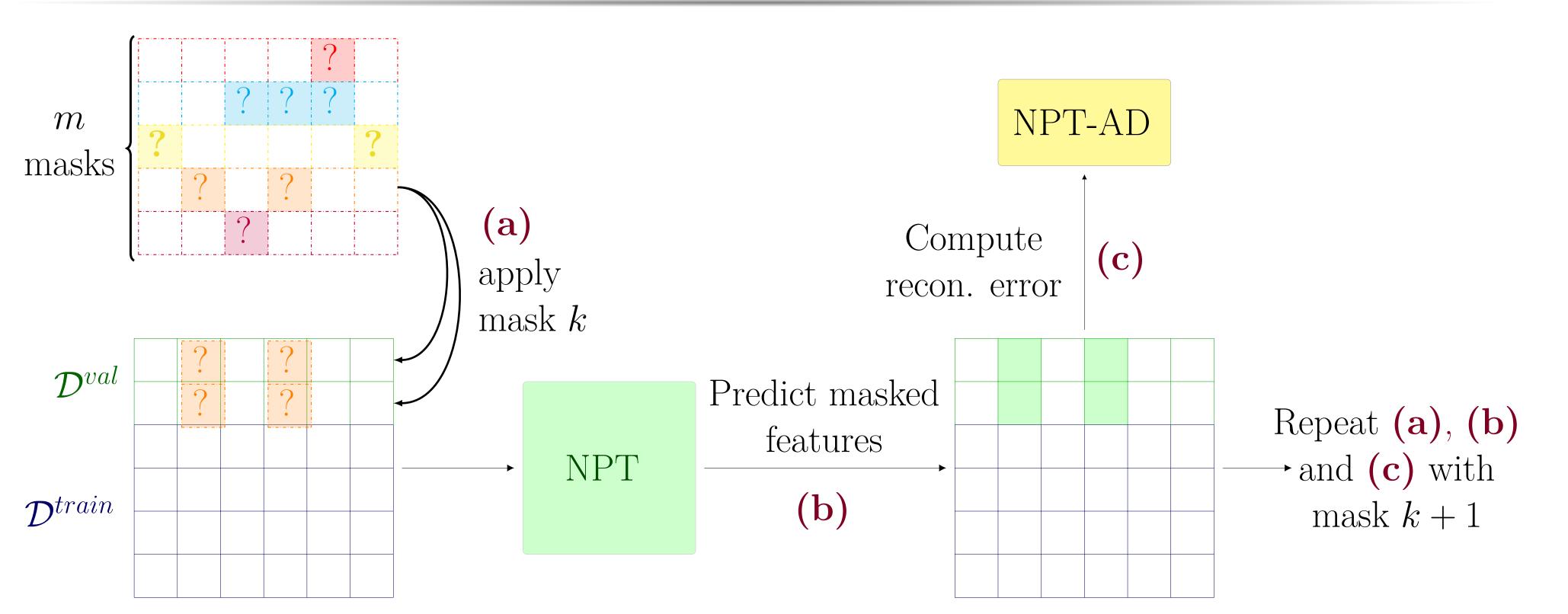
$$\min_{\theta \in \Theta} \sum_{\mathbf{x} \in \mathcal{D}_{tracin}} d(\mathbf{x}^m, \phi_{\theta}(\mathbf{x}^o)),$$

where $\phi_{\theta}(\mathbf{x}^o) \in \mathbb{R}^d$ denotes the reconstructed masked features of \mathbf{x} by the model, and d(.,.) a distance measure.

Non-Parametric Transformer

- We rely on Non-Parametric Transformers (NPT) as our core model ϕ_{θ} .
- NPT enables leveraging both inter-feature and inter-sample relations.

NPT-AD

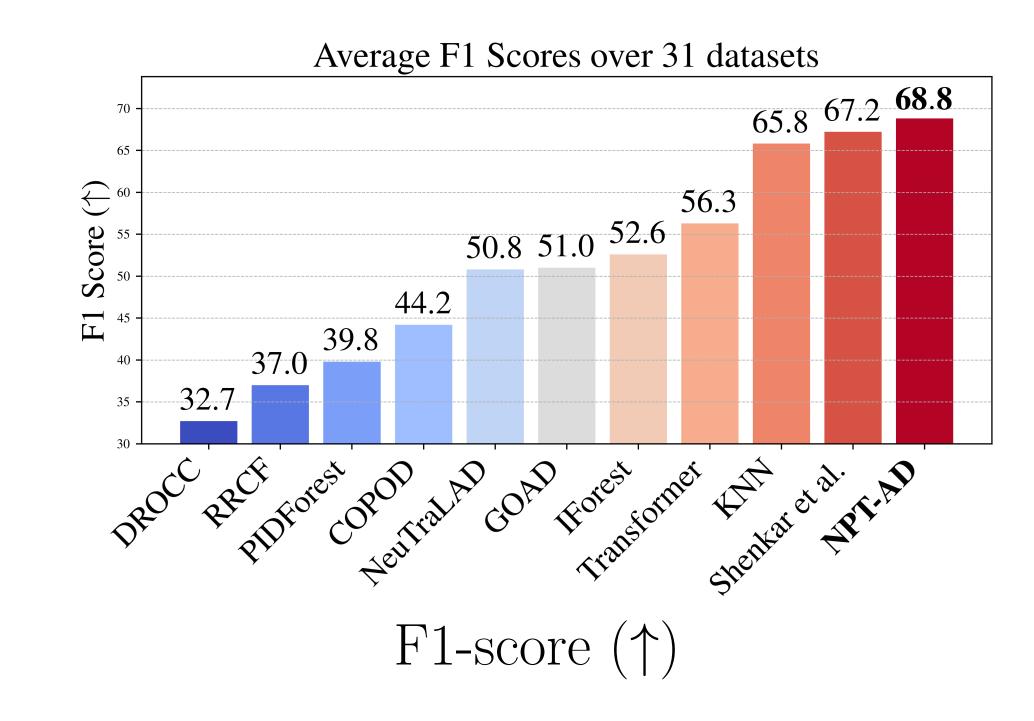


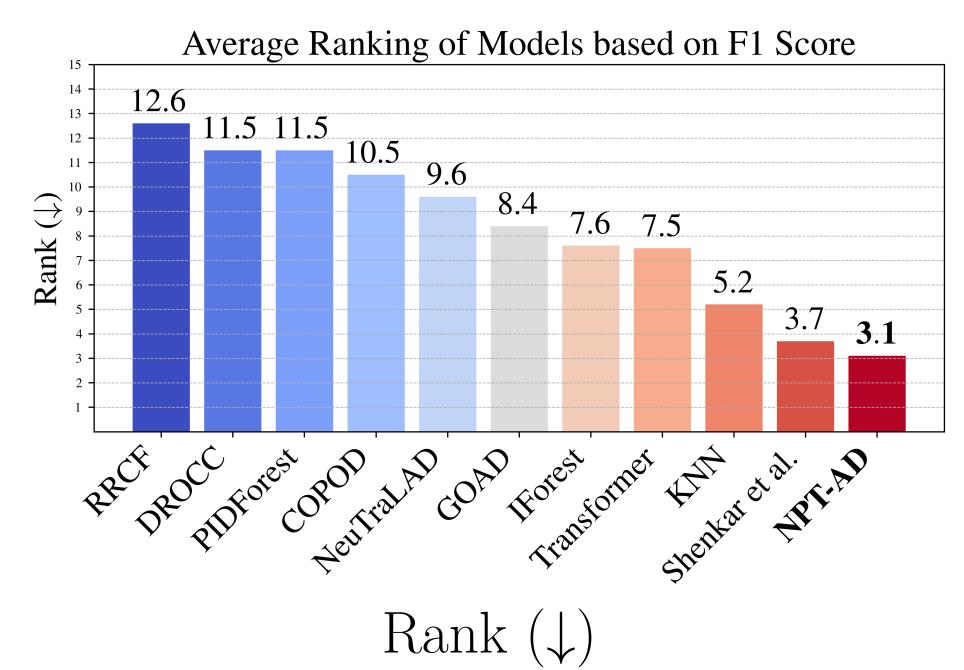
NPT-AD Inference Pipeline

- (a) Mask j is applied to each validation sample. We construct a matrix X composed of the masked validation samples and the whole unmasked training set.
- (b) We feed X to the Non-Parametric Transformer (NPT), which tries to reconstruct the masked features for each validation sample
- (c) We compute the reconstruction error that we later aggregate in the NPT-AD score

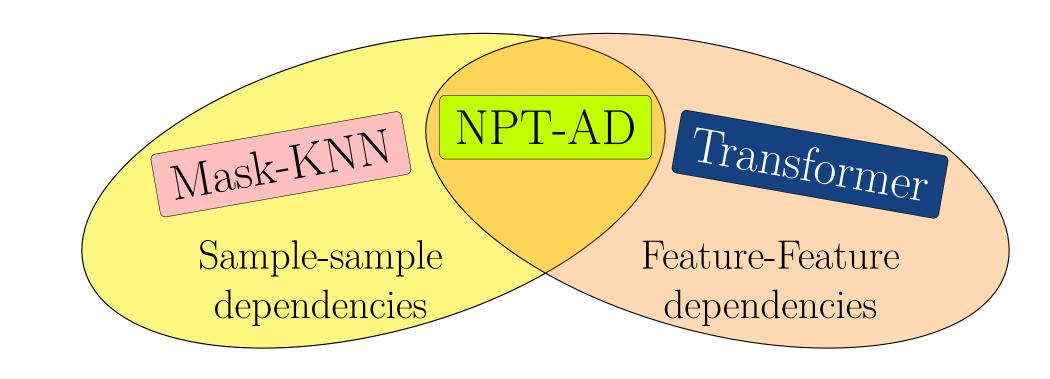
Experiment

- We evaluate our method on a **benchmark of 31 tabular datasets**.
- We compare to both deep and non-deep AD methods and observe that we obtain SOTA performance





Is combining dependencies useful?



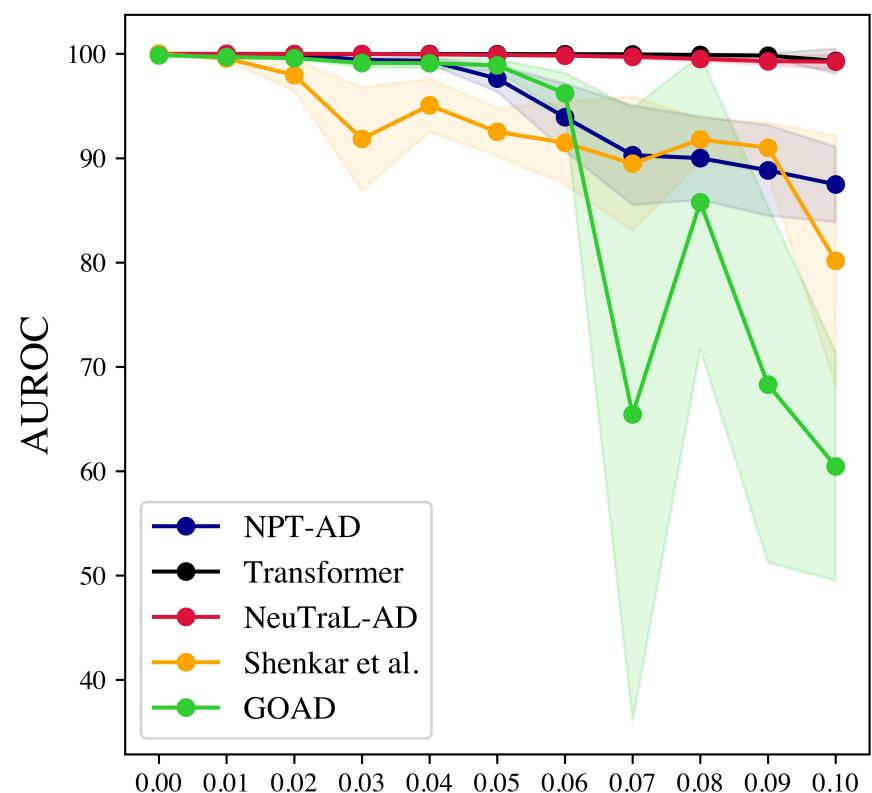
- <u>Mask-KNN</u>: mask reconstruction **only** using **sample-sample dependencies**.
- <u>Transformer</u>: mask reconstruction **only** using **feature-feature dependencies**.

	Transformer	Mask-KNN	NPT-AD
$\overline{F1}$	57.4	57.5	68.8
AUROC	83.0	84.5	89.8

Combining dependencies boosts AD performances!

Robustness to Data Contamination

- What happens when the training set contains anomalies?
- NPT-AD's performance deteriorate **starting from 5% contamination share**.



0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 Share of Anomalies in Training Set