

Paper & Code

Weakly-Supervised Residual Evidential Learning for Multi-Instance Uncertainty Estimation

Pei Liu Luping Ji

School of Computer Science and Engineering, UESTC

Motivation

- **Uncertainty Estimation (UE)**, as an effective means to quantify predictive uncertainty, is crucial for safe and reliable decision-making.
- Existing UE methods often assume there are **completely-labeled** data with which neural networks can be trained to estimate $p(\omega|D)$ and capture epistemic (model) uncertainty for accurate UE:

$$P(Y^*|X^*, \mathcal{D}) = \int \underbrace{P(Y^*|X^*, \omega)}_{\text{aleatoric}} \underbrace{p(\omega|D)}_{\text{epistemic}} d\omega.$$

- In fact, there are many practical tasks involving **weakly-annotated** data. A typical problem is Multi-Instance Learning (MIL), in which
 - Each sample is a bag of **multiple instances**: $X = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_K\}$.
 - Instance label y is **unknown** and only an overall bag-level statement is given: $Y = \max\{y_1, y_2, \dots, y_K\}$.
- This motivates us to study a new problem of **Multi-Instance Uncertainty Estimation (MIUE)**.

Challenges

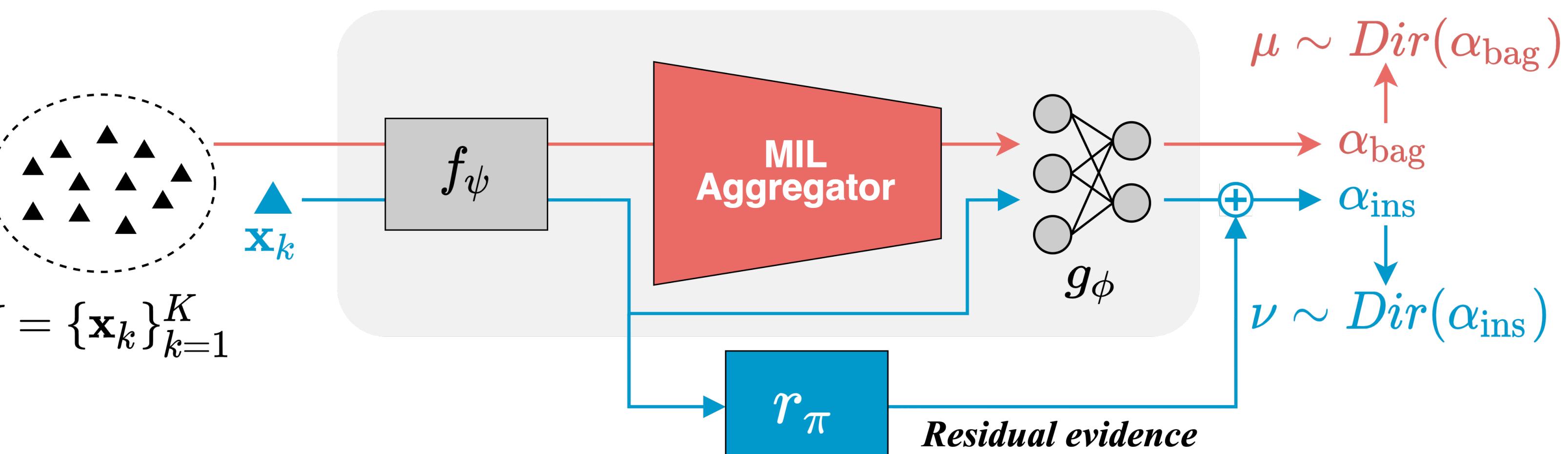
- Tackling MIUE requires a MIL model to
 - **(Bag-level UE)** learn $p(\omega|D)$ from the multi-instance bags with **variable sizes**
 - **(Weakly-supervised instance-level UE)** and meanwhile jointly estimate a new **weakly-supervised posterior** $p(\theta_w|D)$ with weakly-annotated instances.

$$P(y^*|\mathbf{x}^*, \mathcal{D}) = \int P(y^*|\mathbf{x}^*, \theta_w) p(\theta_w|\mathcal{D}) d\theta_w$$

* θ_w parameterizes the mapping from \mathbf{x} to y (weak labels)

Method

- We propose to model bag-level and instance-level predictive probability with posterior **Dirichlet distributions**, inspired by evidential deep learning (EDL).



- Let $T = g \circ f$, our **residual instance estimator** is expressed as

$$R(\mathbf{x}) = T(\mathbf{x}) + r_\pi(\mathbf{h}) = g_\phi(f_\psi(\mathbf{x})) + r_\pi(f_\psi(\mathbf{x}))$$
Residual to learn

Proposition 1. Let $S(\cdot)$ be a bag classifier and satisfy $S(X) = g(\sum_k f(\mathbf{x}_k))$. For any bag X and its label $Y \in \{0, 1\}$, further assume S can predict bags precisely: $S(X) = Y$. Then, there exists an estimator with $T = g \circ f$ for any instance \mathbf{x} , such that $T(\mathbf{x}) = y$, where $y \in \{0, 1\}$ is the label of \mathbf{x} .

- Our **optimization strategy for $R(\mathbf{x})$** : (i) for $Y = 0$, all instances are negative, directly used for supervision; (ii) for $Y = 1$, we multiply the evidence of \mathbf{x}_k (written as α_k) by different weights and aggregate them into a single one for supervision:

$$\mathcal{L}_{\text{ins}}^+ = \mathbb{E}_{\nu \sim \text{Dir}(\tilde{\alpha})} [-\log p(Y = 1|\nu, \tilde{\alpha}, \sigma^2)],$$

$$\tilde{\alpha} = \sum_k \frac{w_k}{\sum_\tau w_\tau} \alpha_k, \quad w_k = \mathbb{E}_{\nu \sim \text{Dir}(\alpha_k^{(T)})} p(y = 1|\nu),$$

and $\alpha_k^{(T)}$ is the evidence of \mathbf{x}_k derived from $T(\mathbf{x})$.

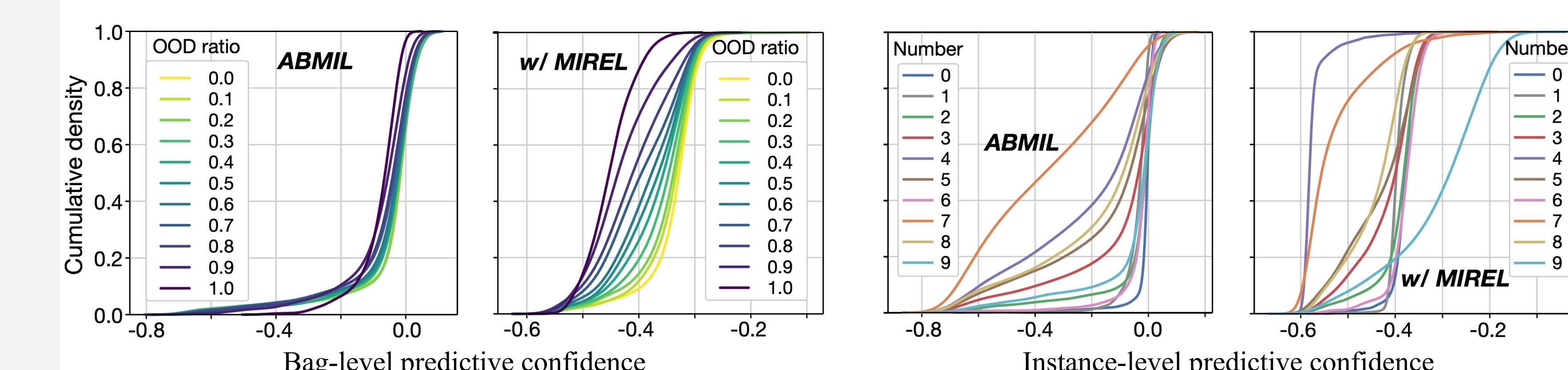
Justification for $\mathcal{L}_{\text{ins}}^+$: it provides **a tighter upper bound** of the ideal (fully-supervised) instance loss function than common weakly-supervised optimization strategies under mild conditions, suggesting a more suitable θ_w such that there is $p(\theta_w|D) \approx \delta(\theta_w - \hat{\theta}_w)$ for accurate instance UE.

Experiments & Results

- **Main results** on MNIST-bags. OOD-F and OOD-K mean that FMNIST and KMNIST are used for generated OOD bags, respectively. \overline{UE} is the metric averaged on three UE tasks.

Method	Acc.	Conf.	Bag-level			Acc.	Conf.	Instance-level		
			OOD-F	OOD-K	\overline{UE}			OOD-F	OOD-K	\overline{UE}
<i>- Combined with deep MIL networks</i>										
Mean	93.38 ± 0.90	87.02 ± 1.04	77.57 ± 2.46	54.66 ± 2.62	73.08	86.52 ± 0.97	66.49 ± 1.37	79.36 ± 1.95	57.43 ± 1.50	67.76
Mean + MIREL	93.50 ± 0.53	87.01 ± 1.04	75.26 ± 1.52	57.69 ± 6.28	73.32	92.45 ± 1.22	91.49 ± 1.76	69.98 ± 4.41	56.70 ± 4.97	72.72
Max	94.56 ± 0.46	87.82 ± 1.49	75.23 ± 1.32	62.44 ± 3.00	75.17	92.53 ± 0.54	81.86 ± 1.54	76.97 ± 1.71	62.53 ± 1.61	73.79
Max + MIREL	95.96 ± 0.29	87.85 ± 2.23	84.17 ± 3.32	66.75 ± 5.70	79.59	96.82 ± 0.27	84.22 ± 0.43	80.81 ± 4.88	61.15 ± 3.28	75.40
DSMIL	96.22 ± 0.17	87.56 ± 0.95	71.13 ± 5.20	60.71 ± 7.91	73.13	70.16 ± 3.56	64.64 ± 0.49	59.75 ± 2.35	57.50 ± 2.55	60.63
DSMIL + MIREL	96.50 ± 0.37	87.26 ± 2.66	87.27 ± 4.27	62.03 ± 7.78	78.85	97.19 ± 0.29	73.79 ± 15.68	73.29 ± 10.85	57.58 ± 3.44	68.22
ABMIL	95.74 ± 0.38	86.91 ± 0.98	82.93 ± 4.81	74.37 ± 4.84	81.41	75.03 ± 0.28	61.28 ± 0.86	63.68 ± 1.00	52.63 ± 1.07	59.20
ABMIL + MIREL	96.48 ± 0.22	86.63 ± 1.32	92.84 ± 0.60	79.95 ± 4.12	86.47	87.71 ± 0.67	90.73 ± 1.31	78.13 ± 2.19	67.02 ± 1.94	78.63
<i>- Compared with related UE methods using ABMIL as the base MIL network</i>										
Deep Ensemble	96.06 ± 0.35	87.36 ± 0.59	80.07 ± 2.57	74.33 ± 3.97	80.59	75.56 ± 0.32	71.89 ± 0.91	70.48 ± 0.53	55.22 ± 1.16	65.87
MC Dropout	96.28 ± 0.41	88.46 ± 1.82	89.57 ± 3.84	78.24 ± 4.89	85.42	75.61 ± 0.66	68.34 ± 1.06	58.61 ± 1.38	65.12	
\mathcal{T} -EDL	96.08 ± 0.20	86.78 ± 0.87	85.51 ± 7.56	73.15 ± 3.87	81.82	75.45 ± 0.13	60.72 ± 1.46	63.91 ± 1.31	54.14 ± 2.19	59.59
Bayes-MIL	96.44 ± 0.33	85.63 ± 1.53	81.02 ± 11.71	57.04 ± 12.61	74.57	91.64 ± 1.25	82.24 ± 1.85	60.77 ± 6.59	42.06 ± 2.84	61.69
MIREL	96.48 ± 0.22	86.63 ± 1.32	92.84 ± 0.60	79.95 ± 4.12	86.47	87.71 ± 0.67	90.73 ± 1.31	78.13 ± 2.19	67.02 ± 1.94	78.63

- Bag-level and instance-level **uncertainty analysis** on MNIST-bags.



- Understand **$R(\mathbf{x})$'s UE behavior** using a synthetic 2D MIL dataset:

