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* Uncertainty Estimation (UE), as an effective means to quantify
predictive uncertainty, 1s crucial for safe and reliable decision-making.

* We propose to model bag-level and instance-level predictive
probability with posterior Dirichlet distributions, inspired by

* Existing UE methods often assume there are completely-labeled data evidential deep learning (EDL).

with which neural networks can be trained to estimate p(w|D) and p ~ Dir(apag)
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ﬂ Residual evidence

» LetT = g o f, our residual instance estimator 1s expressed as

R(x) =T(x) +r-(h) = gqb(fv,b (%)) + Tw(fzp (x))| Residual to learn

Proposition 1. Let S(+) be a bag classifier and satisfy S(X) = g f (Xx)).
For any bag X and its label Y € {0, 1}, further assume S can predict bags
precisely: S(X) =Y. Then, there exists an estimator with T = g o [ for any
instance X, such that T (X) =y, where y € {0, 1} is the label of X.

* In fact, there are many practical tasks involving weakly-annotated
data. A typical problem 1s Multi-Instance Learning (MIL), in which

O Each sample is a bag of multiple instances: X = {X{, X5, ..., Xg }.
[ Instance label y is unknow and only an overall bag-level statement

is given: Y = max{yy, ¥, ..., Vi }.

* This motivates us to study a new problem of Multi-Instance
Uncertainty Estimation (MIUE).

Challenges * Our optimization strategy for R(x): (i) for Y = 0, all instances are

| | negative, directly used for supervision; (i) for Y = 1, we multiply
* Tackling MIUE requires a MIL model to the evidence of X;, (written as «;,) by different weights and aggregate

them 1nto a single one for supervision:

 Eypira [~ logpl(Y = 1, &,0%)]

O (Bag-level UE) learn p(w|D) from the multi-instance bags with
variable sizes

L] (Weakly-supervised instance.-level UE).and meanwhﬂ? jointly a=Y,s%t-ap, wp=E (a(T))p(y = 1|v),
estimate a new weakly-supervised posterior p(0y,|D) with . i k
weakly-annotated instances. and a,ﬁ ) is the evidence of X . derived from T (x).

Justification for L. .: it provides a tighter upper bound of the ideal (fully-
supervised) instance loss function than common weakly-supervised
optimization strategies under mild conditions, suggesting a more suitable

0., such that there is p(0.,|D) = §(0, — 0,,) for accurate instance UE.

P(y*|x", D) = /P(y*|x*,0w)p(9w\7))d9w

* 0,, parameterizes the mapping from X to y (weak labels)
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* Main results on MNIST-bags. OOD-F and OOD-K mean that
FMNIST and KMNIST are used for generated OOD bags,
respectively. UE 1s the metric averaged on three UE tasks.

Method Bag-level Instance-level

Acc. Conf. OOD-F OOD-K UE Acc. Conf. OOD-F OOD-K UE
- Combined with deep MIL networks
Mean 9338 £090 87.02+1.04 77.57 +2.46 54.66 +2.62 73.08 | 86.524+097 66.49 + 1.37 79.36 +195 5743+150 67.76
Mean + MIREL 93,504+ 053 87.01 £1.04 75.26 £1.52 57.69 +628 7332 | 9245+122 9149+ 1.76 69.98 +441  56.70 497 T2.72
Max 9456 + 046 87.82+149 75.23 £1.32 62.44 +3.00 75.17 | 9253+ 054  81.86 + 1.54 7697 £ 171 6253+ 161 73.79
Max + MIREL 9596 +029 87.85+223 84.17 £+ 3.32 66.75 £ 570 79.59 | 96.82 +0.27 84.22 £ 0.43 80.81 +488 61.15+328 75.40
DSMIL 96.22 +0.17 87.56 + 0.95 1113 £5.20 60.71 + 7.91 1513 70.16 + 3.56 64.64 £+ 0.49 59.75 £2.35 57.504+255 60.63
DSMIL + MIREL | 96.50 +037 87.26 266  87.27 + 4.27 62.03 +-778 78.85 | 97.19+029 73.79 + 1568 73.29 +10.85 57.58 +344 68.22
ABMIL 95.74 £ 038 86.91 + 098  82.93 1 4.81 7437 +-484  81.41 | 75.03 +028 61.28 +0.86 63.68 +1.00 52.63+1.07 59.20
ABMIL + MIREL | 9648 +022 86.63 +132 92.84 + 0.60 7995 + 412 8647 | 87771 £0.67 90.73 £+ 1.31 7813 +£2.19 67.02+194 78.63
- Compared with related UE methods using ABMIL as the base MIL network
Deep Ensemble 96.06 £ 035 87.36 £0.59 80.07 & 2.57 7433 £397 80.59 | 7556 +032 71.89 £+ 091 70.48 £ 053 5522+ 1.16 65.87
MC Dropout 96.28 + 041 88.46 +1.82  89.57 + 3.84 7824 +489 8542 | 75.61 066 6840+ 1.54 68.34 +1.06 58.61 138 65.12
Z-EDL 96.08 020 86.78 +0.87  85.51 £ 7.56 73.15 +£387 81.82 | 7545+0.13 60.72 £ 1.46 6391 £ 131 54144219 59.59
Bayes-MIL 9644 + 033 85.63 +1.53 81.02+11.71 57.04+ 1261 7457 | 91.64+125 8224 +1.85 60.77 + 659 42.06 £2.84 61.69
MIREL 9648 +022 86.63 +1.32  92.84 + 0.60 7995 +412 86.47 | 87.71 £0.67 90.73 £+ 1.31 7813 +£2.19 67.02+194 78.63

* Bag-level and instance-level uncertainty analysis on MNIST-bags.
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* Understand R(x)’s UE behavior using a synthetic 2D MIL dataset:
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