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»» Research Background

» Current Adversarial Defense in Deep Metric Learning
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»Y» Our Method

> Collapse-Aware Triplet Decoupling (CA-TRIDE)
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»» Our Method

» Collapse-Aware (CA) -> Model Collapse
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»Y» Our Method

» Triplet Decoupling (TRIDE) -> Weak Adversary
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»Y» Our Method

> Collapse-Aware Triplet Decoupling (CA-TRIDE)
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»Y» Experiments & Conclusions

Dataset | Defense | PGD | Benign Example Evaluation | Adversarial Example Evaluation (%) | Overall | Overall
| Method | steps | R@11 | R@21 | mAPt | NMIt | CA+t CA-1T QA+f QA-1 ESR{ LIMt GIM?t GIT4 | ERSt | ARS1t
N/A N/A 58.9 66.4 26.1 59.5 33 0.0 0.0 0.0 0.0 0.0 239 0.0 3.8 3.5
CUB ACT 32 27.5 38.2 12.2 43.0 31.0 62.9 30.2 68.5 40.3 34.2 54.2 1.0 33.9 40.3
HM 32 349 45.0 19.8 47.1 31.0 62.9 33.2 69.8 51.3 47.9 78.2 2.9 36.0 472
Ours 16 349 45.1 19.6 45.6 32.6 68.5 41.8 79.2 61.9 59.0 64.8 53 38.6 51.6
N/A N/A 63.2 75.3 36.6 55.6 0.4 0.0 0.0 3.6 0.0 0.0 21.2 0.0 3.6 2.8
CARS ACT 32 43.4 54.6 11.8 429 36 68.4 35 70.2 37.6 353 47.7 1.6 38.6 414
HM 32 60.2 71.6 339 51.2 38.6 74.8 392 75.1 50.3 61.0 76.4 8.8 46.1 52.9
Ours 16 60.7 71.2 34.6 49 4 36 81.0 47.0 87.5 64.4 66.9 60.8 13.7 47.7 57.2
N/A N/A 62.9 68.5 39.2 87.4 0.2 0.6 0.3 0.9 0.0 0.0 10.0 0.0 4.0 1.5
SOP ACT 32 47.5 52.6 25.5 84.9 48.2 90.4 454 91.5 44.6 45.5 58.5 15.3 50.8 54.9
HM 32 46.8 51.7 24.5 84.7 64.0 06.8 67.4 98.0 83.5 85.0 81.0 45.6 61.6 77.7
Ours 16 48.3 53.3 25.9 84.9 65.8 97.1 71.4 97.9 89.4 934 82.4 53.1 62.4 81.3
Defense | R@11 | Adversarial Example Evaluation (ARS) (%) | Overall | Overall
Method | | CA+f CA-+ QA+t QA-t | BSRT LTM{ GIM{ GTT{ | ERST | ARSt
CA-ANP 34.2 27.4 56.7 35.6 73.3 57.3 61.1 65.8 5.1 34.0 47.8
CA-CAP 33.8 34.2 68.0 52.2 70.8 51.2 47.6 60.7 3.1 37.9 48.5
CA-TRIDE 34.9 32.6 68.5 41.8 79.2 61.9 59.0 64.8 5.3 38.6 51.6

v' CA-TRIDE achieves SOTA performance on both benign and adversarial examples on
CUB, CARS and SOP.

v" Through TRIDE, our CA-TRIDE uses less time (~15%) and half PGD steps to achieve
better robustness and accuracy.
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v Proven insensibility of our methods towards hyperparameters.
v' Interesting correlation between attention factor A and entanglement level.
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v Ablation studies validate the effectiveness of CA to stop model collapse and TRIDE to
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Collapse-Aware Triplet Decoupling for Adversarially Robust Image Retrieval
Qiwei Tian, Chenhao Lin, Zhengyu Zhao, Qian Li, Chao Shen

Adversarial training has achieved substantial performance in defending image retrieval against adversarial examples. However, existing studies in deep metric learning (DML) still suffer
from two major limitations: weak adversary and model collapse. In this paper, we address these two limitations by proposing Collapse-Aware TRIplet DEcoupling (CA-TRIDE). Specifically,
TRIDE vyields a stronger adversary by spatially decoupling the perturbation targets into the anchor and the other candidates. Furthermore, CA prevents the consequential model collapse,
based on a novel metric, collapseness, which is incorporated into the optimization of perturbation. We also identify two drawbacks of the existing robustness metric in image retrieval and

propose a hew metric for a more reasonable robustness evaluation. Extensive experiments on three datasets demonstrate that CA-TRIDE outperforms existing defense methods in both
conventional and new metrics. Codes are available at this https URL.
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