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Motivation Overview

Encourage the Planning module to generate similar latent decisions from similar perceptual features 𝑧𝑧𝑝𝑝

(positive samples), while producing diverse decisions from dissimilar driving contexts 𝑧𝑧𝑝𝑝 (negative samples).

 Self-Supervised Task-Specific Sensorimotor Learning without Task-Level Supervision

 A robotic RC vehicle platform

 Indoor navigation scenarios

 Multiple driving tasks

• Straight (ST)

• Left-Turn (LT)

• Right-Turn (RT)

• Collision Avoidance (CA)
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Experiments

t-SNE Visualization Representational Similarity Matrix

Training Details

Interpretation Details

 The latent decision vector is decoded through lightweight Multiclass Support Vector Machines (SVMs)

 Utilize a calibration method to represent the classification results as probabilities among different tasks

 Mapping the Mind (Decision) of a Robotic End-to-End Sensorimotor Network

1) Network Architecture: Modular End-to-End Network (Perception & Planning & Control)

2) Training Objectives: Latent-Guided Contrastive Loss (𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳) + Supervised Imitation Loss (𝑳𝑳𝝅𝝅)

3) Neural Interpretation Methods: Post-hoc Multiclass SVM Classifier + Calibration Method

Discussion
Our interpretable end-to-end learning

 Has more reliable and less uncertain sensorimotor control

 Facilitates a hybrid architecture (end-to-end + external modules)

 Integrages robotic learning with eXplainable Artificial Intelligence

USRG Lab

Recent
End-to-End Architectures:
 Efficient to learn policy
 No (or Less) heuristic
 Struggle to learn task-

specific policy
 No interpretable process

Rethinking
Modular Architectures:
 Task-oriented control
 Interpretable representation
 Complex inter-module 

dependencies
 Require much heuristics

Main Contributions:

1) End-to-End Architecture + Latent Functional Modularity

2) Self-Supervised Sensorimotor Learning with Task Specificity

3) Neural Interpretation via a Post-Hoc Explainability Method

▲ Optimization problem for Support Vector Machine ▲ Calibration method using sigmoid function

Learning Curves

 Neural Interpretation Results

 Hardware & Scenario Setup

 Task Specificity ResultsContributions

Decision ???
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