

Self-Supervised Interpretable End-to-End Learning via Latent Functional Modularity

Encourage the *Planning* module to generate similar latent decisions from similar perceptual features (*positive samples*), while producing diverse decisions from dissimilar driving contexts z^p (*negative samples*). \rightarrow Self-Supervised Task-Specific Sensorimotor Learning without Task-Level Supervision

Hyunki Seong, David Hyunchul Shim Korea Advanced Institute of Science and Technology

Motivation Overview

1) Network Architecture: Modular End-to-End Network **(***Perception & Planning & Control***) 2) Training Objectives: Latent-Guided Contrastive Loss** (L_{LGC}) **+ Supervised Imitation Loss** (L_{π}) **Contributions**

3) Neural Interpretation Methods: Post-hoc Multiclass SVM Classifier + Calibration Method

3) Neural Interpretation Methods: Post-hoc Multiclass SVM Classifier + Calibration Method

> 2. Classify the task of the latent decision using a trained Multiclass SVM Classifier

$$
h_i^d + b))^2
$$

3. Calibrate the probabilities of the SVM Classifier's results to yield more interpretable representations $P(y = k|h^d)$ $P(y_i = k|h_i^d) = \frac{1}{1 + exp(E_k f_k(h_i^d) + F_k)}$

▲ Optimization problem for Support Vector Machine ▲ Calibration method using sigmoid function

-
- Collision Avoidance (**CA**)

Paper & Code

Experiments

Training Details

Interpretation Details

1. Generate a latent decision

-
-
-
- Efficient to learn policy
- No (or Less) heuristic \checkmark Struggle to learn task-
- specific policy \checkmark No interpretable process
-

 The **latent decision** vector is decoded through **lightweight Multiclass Support Vector Machines (SVMs)** Utilize a **calibration method** to represent the classification results as *probabilities among different tasks*

- Task-oriented control
- \checkmark Interpretable representation
- \checkmark Complex inter-module dependencies
- \checkmark Require much heuristics

-
-
-

Mapping the Mind (Decision) of a Robotic End-to-End Sensorimotor Network

Discussion

Our interpretable end-to-end learning

Hardware & Scenario Setup \checkmark A robotic RC vehicle platform Indoor navigation scenarios Multiple driving tasks 71 m • Straight (**ST**) **RC Platform** Corridor Env. • Left-Turn (**LT**) • Right-Turn (**RT**)

- Has **more** *reliable* and **less** *uncertain* sensorimotor control
- Facilitates a *hybrid architecture* (end-to-end + external modules)
- Integrages *robotic learning* with *eXplainable Artificial Intelligence*

Recent

End-to-End Architectures:

Rethinking

Modular Architectures:

Main Contributions:

- *1) End-to-End Architecture + Latent Functional Modularity*
- *2) Self-Supervised Sensorimotor Learning with Task Specificity*
- *3) Neural Interpretation via a Post-Hoc Explainability Method*

Neural Interpretation Results

