Self-Supervised Interpretable End-to-End Learning via Latent Functional Modularity

Hyunki Seong, David Hyunchul Shim Korea Advanced Institute of Science and Technology

Motivation

End-to-End Architectures

- Efficient to learn policy
- No (or Less) heuristic ✓ Struggle to learn taskspecific policy
- ✓ No interpretable process

Rethinking **Modular Architectures:**

- ✓ Task-oriented control
- ✓ Interpretable representation
- ✓ Complex inter-module dependencies
- ✓ Require much heuristics

Contributions

Main Contributions:

- 1) End-to-End Architecture + Latent Functional Modularity
- 2) Self-Supervised Sensorimotor Learning with Task Specificity
- 3) Neural Interpretation via a Post-Hoc Explainability Method

Discussion

Our interpretable end-to-end learning

- ✓ Has more reliable and less uncertain sensorimotor control
- ✓ Facilitates a *hybrid architecture* (end-to-end + external modules)
- ✓ Integrages *robotic learning* with *eXplainable Artificial Intelligence*

Paper & Code

USRG Lab

Overview

- 1) Network Architecture: Modular End-to-End Network (Perception & Planning & Control)
- 2) Training Objectives: Latent-Guided Contrastive Loss (L_{LGC}) + Supervised Imitation Loss (L_{π})
- 3) Neural Interpretation Methods: Post-hoc Multiclass SVM Classifier + Calibration Method

Training Details

Encourage the *Planning* module to generate similar latent decisions from similar perceptual features z^p (positive samples), while producing diverse decisions from dissimilar driving contexts z^p (negative samples).

→ Self-Supervised Task-Specific Sensorimotor Learning without Task-Level Supervision

Interpretation Details

1. Generate a latent decision

- 2. Classify the task of the latent decision
- using a trained Multiclass SVM Classifier $\min_{w,b} \frac{1}{2} w^T w + C \sum_{i} \max(0, 1 - y_i (w^T h_i^d + b))^2$
- 3. Calibrate the probabilities of the SVM Classifier's results to yield more interpretable representations $P(y = k | h^d)$ $P(y_i = k | h_i^d) = \frac{1}{1 + exp(E_k f_k(h_i^d) + F_k)}$
- ▲ Optimization problem for Support Vector Machine
- ▲ Calibration method using sigmoid function
- ✓ The latent decision vector is decoded through lightweight Multiclass Support Vector Machines (SVMs)
- ✓ Utilize a calibration method to represent the classification results as *probabilities among different tasks*
 - → Mapping the Mind (Decision) of a Robotic End-to-End Sensorimotor Network

Experiments

☐ Hardware & Scenario Setup

- ✓ A robotic RC vehicle platform
- Indoor navigation scenarios
- Multiple driving tasks
 - Straight (ST)
 - Left-Turn (**LT**)
 - Right-Turn (**RT**)
 - Collision Avoidance (CA)

□ Task Specificity Results

t-SNE Visualization

Representational Similarity Matrix

Learning Curves

■ Neural Interpretation Results

