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Introduction

Introduction to Functional Time Series
▶ Functional time series: sequential collection of functional

objects with temporal dependence.
▶ Examples:

▶ Annual age-specific mortality rates for different countries.
▶ Daily energy consumption curves from various households.
▶ Cumulative intraday return trajectories for hundreds of stocks.

▶ These datasets can be represented as p-dimensional functional
time series Y t(·) =

(
Yt1(·), . . . , Ytp(·)

)T , where each Ytj(·) is
a random function defined on a compact interval U .



Introduction
Challenges
▶ High-dimensionality: The number of functional variables p is

comparable to, or even larger than, the number of temporally
dependent observations n.

▶ Infinite-dimensional nature of curve data
▶ Temporal dependence

(a) Energy Consumption (after
standardization)

(b) World-wide Mortality Rate
(after standardization)

Figure 1: Examples of functional time series



Existing Methods

Statistical Methods
▶ Principal components-based dimension reduction (Guo and

Qiao, 2023; Chang et al., 2023a)
▶ Factor model (Guo et al., 2021)
▶ Segmentation transformation (Chang et al., 2023b)

Limitations
▶ Assume linear and Markovian dynamics
▶ Fail to capture complex nonlinear or non-Markovian temporal

dependence



Existing Methods

Deep Learning
▶ RNN: LSTM, GRU
▶ Transformer

Challenges
▶ Black-box nature lacks explainability
▶ Difficulty in handling cross-sectional and serial correlations
▶ Non-stationarity and large number of parameters



Motivation

▶ Develop a model capable of capturing complex,
non-Markovian, and nonlinear temporal dynamics.

▶ Ensure the model remains explainable, providing insights into
the relationships and dependencies within the data.

▶ Improve predictive accuracy over conventional deep learning
models.



Model

Sparse Functional Factor Model
We propose a functional factor model from the Bayesian
perspective:

Y t(·) = (Z ⊙ A)X t(·) + ϵt(·), t = 1, . . . , n. (1)

▶ Y t(·): observed functional time series.
▶ Z : binary matrix from the Indian buffet process, Z ∼ IBP(α).
▶ A: loading weight matrix, elements Atr ∼ Normal(0, σ2

A).
▶ X t(·): latent functional factor time series.
▶ ϵt(·): Gaussian distributed white noise, scale σϵ.



Model
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Figure 2: Factor Model



Indian Buffet Process

IBP
▶ IBP is a distribution over sparse binary matrices.
▶ Useful for models with an unknown number of latent features.
▶ Each row represents an observation, and each column

represents a latent feature.
▶ The sparsity of the matrix is controlled by a parameter α.

IBP Sampling Process
▶ First customer samples Poisson(α) dishes.
▶ The i-th customer samples each previously chosen dish k with

probability mk
i , where mk is the number of previous customers

who have chosen dish k.
▶ The i-th customer then samples Poisson(α

i ) new dishes.



Indian Buffet Process

Why IBP is used in factorization?
▶ In the context of the sparse functional factor model:

▶ Z ∼ IBP(α) creates a sparse binary matrix.
▶ This matrix controls the inclusion of latent factors for each

observation.
▶ Promotes a parsimonious model by ensuring most factors are

zero for each observation.
▶ Helps in discovering a potentially infinite number of latent

factors without overfitting.



Functional Gaussian Process Dynamical Model
Model Specification
▶ Let X t(·) be the latent functional factors.
▶ X t(·) follows a multi-task GP:

X t(·) ∼ MTGP(0, κU (·, ·), κX (·, ·)) (2)

▶ The covariance structure is:

Cov(Xtr (u), Xsl(v) | Xt−1, Xs−1) = κX (Xt−1, Xs−1)κU (u, v)I(r = l)

where Xt−1 indicates the set of historical information, κX is
the temporal kernel and κU is the spatial kernel.

▶ Meanings of indices:
▶ t, s: time indices
▶ r , l : factor indices
▶ u, v : spatial indices (points in the functional domain)

▶ This model is a functional variant of the Gaussian Process
Dynamical Model (Wang et al. (2005))



Functional Gaussian Process Dynamical Model

Independence or not?
The model assumes independence across factors r and l , as
indicated by I(r = l)?
▶ Marginally dependent
▶ Conditionally independent

Non-Markovian Patterns
By incorporating a kernel function κX that depends on the entire
history Xt−1, the model can capture non-Markovian temporal
dependencies.
Example:

κ(Xt−1, Xs−1) = α1

∫
Xt−1(u)T Xs−1(u) du+α2

∫
Xt−2(u)T Xs−2(u) du



Deep Temporal Kernels

Motivation
Deep kernels combine the flexibility of neural networks with the
probabilistic properties of Gaussian Processes, to capture complex
patterns and dependencies in temporal data.

Specification
▶ Let ht be the hidden representation of the temporal data at

time t.
▶ ht is obtained through a neural network:

ht = H(F (X t−1), F (X t−2), . . . ) (3)

▶ The temporal kernel is then constructed as:

κX (Xt−1, Xs−1) = κ(ht , hs) (4)



Deep Temporal Kernels
Deep Learning Modules
▶ Mapping Function: F maps infinite-dimensional Gaussian

processes to d-dimensional vectors.
▶ Neural Networks: Various architectures can be used for H,

such as LSTM, GRU, and attention mechanisms.
▶ Non-Markovian Patterns: Deep kernels can incorporate

long-term dependencies, capturing non-Markovian patterns.
▶ Example: Using LSTM for H:

ht = LSTM(x1:t) (5)

Advantages
▶ Combines the flexibility of neural networks with the

uncertainty quantification of GPs.
▶ Capable of modeling complex, nonlinear temporal

dependencies.
▶ Allows for the incorporation of modern sequential deep

learning techniques.



The Imperative of Integration

Standard Deep Learning
▶ Directly applying deep learning to high-dimensional functional

data is challenging due to:
▶ High dimensionality of inputs.
▶ Limited number of training time steps.
▶ Risk of overfitting.
▶ Loss of interpretability.

Role of Factorization
▶ Factorization reduces dimensionality by extracting latent

factors:
Y t(·) = (Z ⊙ A)X t(·) + ϵt(·)

▶ Benefits:
▶ Enhances interpretability.
▶ Reduces computational complexity.
▶ Prevents overfitting: spectrum penalty



The Imperative of Integration
Integration with IBP and Deep Kernels
▶ Indian Buffet Process (IBP):

▶ Provides a flexible, nonparametric approach to determine the
number of latent factors.

▶ Ensures sparsity in the factor loading matrix.
▶ Deep Kernels:

▶ Incorporate non-Markovian and nonlinear dependencies.
▶ Enhance the ability to capture complex temporal patterns.

Overall Framework
▶ The integration of factorization, IBP, and deep kernels results

in a robust and explainable model:

DF2M = Factor Model + IBP + Deep Temporal Kernels

▶ This combination balances model complexity, interpretability,
and predictive accuracy.



Sparse Variational Inference

Variational Inference
▶ Approximates the posterior distribution by maximizing the

Evidence Lower Bound (ELBO).
▶ Minimizes the Kullback-Leibler (KL) divergence between the

variational distribution and the true posterior.

Sparse Variational Inference for Gaussian Processes
▶ Introduces a set of inducing variables to represent the

function at a smaller set of points, v = (v1, . . . , vK ).
▶ Variational distribution for inducing variables:

q(X(v)) = N (µ, S) (6)

▶ ELBO can be computed more efficiently by marginalizing over
the inducing variables.



Sparse Variational Inference

Sparse Variational Inference for DF2M
▶ Uses common locations for inducing variables across

functional factors.
▶ Variational distribution for multi-task Gaussian process with

inducing variables:

q
(
X r (·)

)
= p

(
X1r (·), . . . , Xnr (·) | X1r (v), . . . , Xnr (v), κX , κU

)
n∏

t=1
q

(
X tr (v)

)
(7)



Sparse Variational Inference
ELBO for DF2M

ELBO =
n∑

t=1
Eq

[
log p

(
Y t(·) | X t(·), Z , A

)]
− KL

[
q(Z) ∥ p(Z | α)

]
− KL

[
q(A) ∥ p(A | σA)

]
−

∑
r≥1

KL
[
q

(
X r (v)

)
∥ p

(
X r (v) | κX , κU

)]
(8)

Closed Form
We derive a closed form of the last term as:

2KL
[
q

(
X r (v)

)
∥ p

(
X r (v) | κX , κU

)]
= trace

(
(Σ−1

X ⊗ Σvv−1
U )

(
Sr + vec(µr )vec(µr )T ))

+K log |ΣX | + n log |Σvv
U | −

n∑
t=1

log |Str | − nK

(9)



Key Theorems for Efficient Sampling

Theorem 1: Posterior Mean Independence
▶ The mean function of the posterior for Xtr (·) is solely

dependent on the variational mean of Xtr (v), the inducing
variables at time t.

▶
E [Xtr (u)] = Σuv

U (Σvv
U )−1µtr



Key Theorems for Efficient Sampling

Theorem 2: Posterior Variance Decomposition
▶ The variance function of the posterior for Xr (·) consists of

two parts.
▶ The first part is dependent on the variational variance of

Xtr (v).
▶ The second part is independent of the variational distributions

of all inducing variables.
▶

Varq [vec (Xr (u))] =
(
I ⊗ Σuv

U (Σvv
U )−1

)
diag(S1r , . . . , Snr )

+ ΣX ⊗
(
Σuu

U − Σuv
U (Σvv

U )−1(Σuv
U )⊤

)



Key Theorems for Efficient Sampling

Theorem 3: Irrelevance to ELBO
▶ Sampling Xtr (·) from the distribution of X̃(1)

r (·) does not
change the variational mean.

▶ The corresponding ELBO is only modified by a constant term.
▶

1
2σ2

ϵ

∥Z ⊙ A∥2
F trace [ΣX ] trace

[
Σuu

U − Σuv
U (Σvv

U )−1(Σuv
U )⊤

]



Training and Prediction

Training
▶ Utilize Automatic Differentiation Variational Inference (ADVI)

to optimize the variational parameters.
▶ Compute the gradient of the Evidence Lower Bound (ELBO)

with respect to the parameters.
▶ Iterate the following steps until ELBO converges:

▶ Update variational distribution parameters µtr and Str for
inducing variables Xtr (v).

▶ Update variational parameters for the Indian Buffet Process
({τ 1

j , τ 2
j }1≤j≤M and {mtj}1≤t≤n,1≤j≤M) and loading weight

matrix ({ηtj , σA
tj}1≤t≤n,1≤j≤M).

▶ Update the idiosyncratic noise scale σϵ and parameters in the
spatial kernel κU (·, ·).



Training and Prediction

Prediction
▶ Once the model is trained, generate a posterior distribution

based on the observed data up to time n.
▶ Make predictions for future time steps based on this

distribution.
▶ One-step ahead prediction:

Ȳn+1(u) = (Z̄ ⊙ Ā)X̄n+1(u)

where

X̄n+1,r (u) = Σuv
U (Σvv

U )−1µr Σ−1
X (Σn+1,1:n

X )⊤



Experiments
Datasets
We applied DF2M to four real-world datasets consisting of
high-dimensional functional time series:
▶ Japanese Mortality

▶ Age-specific mortality rates for 47 Japanese prefectures.
▶ Time span: 1975 to 2017 (p = 47, n = 43).

▶ Energy Consumption
▶ Half-hourly measured energy consumption curves for London

households.
▶ Time span: December 2012 to January 2013 (p = 40, n = 55).

▶ Global Mortality
▶ Age-specific mortality rates across 32 countries.
▶ Time span: 1960 to 2010 (p = 32, n = 50).

▶ Stock Intraday
▶ High-frequency price observations for the S&P 100 component

stocks.
▶ Time span: 2017, with ten-minute resolution prices (p = 98,

n = 45).



Experiments Setup and Metrics

Experimental Setup
▶ The data is split into a training set with the first n1 periods

and a test set with the last n2 periods.
▶ For each integer h > 0, we make the h-step-ahead prediction

using the fitted model on the first n1 periods.
▶ The process is repeated by moving the training window by one

period, refitting the model, and making new predictions.



Experiments Setup and Metrics

Evaluation Metrics
We use two metrics to assess the predictive accuracy of the model:
▶ Mean Absolute Prediction Error (MAPE)

MAPE(h) = 1
M

p∑
j=1

K∑
k=1

n∑
t=n1+h

∣∣∣Ŷtj(uk) − Ytj(uk)
∣∣∣

▶ Mean Squared Prediction Error (MSPE)

MSPE(h) = 1
M

p∑
j=1

K∑
k=1

n∑
t=n1+h

[
Ŷtj(uk) − Ytj(uk)

]2

▶ Where:
▶ M = Kp(n2 − h + 1) is the total number of predictions.
▶ Ŷtj(uk) is the predicted value.
▶ Ytj(uk) is the actual value.



Experiments Setup and Metrics

DF2M Variants
▶ DF2M-LIN: Linear model
▶ DF2M-LSTM: Long Short-Term Memory
▶ DF2M-GRU: Gated Recurrent Unit
▶ DF2M-ATTN: Attention Mechanism



Empirical Results: Explainability

Explainability of DF2M
▶ Temporal Dynamics of Largest Factors

▶ Observed a decreasing trend over time in the largest factors for
the first three datasets.

▶ Factors exhibit clear and smooth dynamics, aiding in robust
predictions and understanding underlying changes.

▶ Temporal Covariance Matrix (ΣX )
▶ Strong autocorrelation in the first three datasets compared to

the Stock Intraday dataset.
▶ Mortality datasets show strong autoregressive and blockwise

patterns indicating change points in the 1980s.
▶ Energy Consumption dataset reveals periodic patterns

distinguishing weekdays and weekends during the first 21 days.



Empirical Results: Explainability

(a) Japanese mortality (b) Energy consumption (c) Global mortality (d) Stock Intraday

Figure 3: A visualization of real datasets with analysis. Row (1): raw functional time
series. Row (2): the largest functional factor. Row (3): temporal covariance matrix.
Rows (1) and (2) use a blue-to-red gradient to denote time progression. Blue for older
and red for recent data. Row (3) employs brightness variations to represent
covariance, with brighter areas indicating higher covariance.



Empirical Results: Predictive Accuracy
Predictive Accuracy of DF2M
▶ DF2M outperforms standard deep learning models in terms of

both MSPE and MAPE across all datasets, except Stock
Intraday where DF2M-ATTN and ATTN achieve similar
accuracy.

▶ DF2M-LSTM:
▶ Best performance on Energy Consumption and Global

Mortality datasets.
▶ DF2M-ATTN:

▶ Lowest prediction error for Japanese Mortality dataset.
▶ DF2M-LIN:

▶ Outperforms DF2M-LSTM and DF2M-GRU on Stock Intraday
dataset, suitable for financial data.

Comparison
▶ DF2M achieves better or comparable results to standard deep

learning models.



Empirical Results: Predictive Accuracy
Table 1: Comparison of DF2M to Standard Deep Learning Models. For formatting reasons, MAPEs are
multiplied by 10, and MSPEs are multiplied by 102, except for the Energy Consumption dataset.

(a) Comparison of DF2M-LIN and LIN
Japanese Mortality Energy Consumption Global Mortality Stock Intraday

h 1 2 3 1 2 3 1 2 3 1 2 3

DF2M-
LIN

MSPE 4.707 4.567 5.623 10.29 17.58 17.64 10.78 9.300 9.706 99.58 101.2 89.82
MAPE 1.539 1.446 1.635 2.334 3.060 3.100 2.319 2.041 2.106 6.424 6.505 6.269

LIN
MSPE 7.808 8.774 9.228 16.16 18.95 20.27 16.84 18.05 19.93 137.5 127.8 139.1
MAPE 2.092 2.227 2.313 2.939 3.214 3.342 2.783 2.949 3.174 7.896 7.491 7.924

(b) Comparison of DF2M-LSTM and LSTM
Japanese Mortality Energy Consumption Global Mortality Stock Intraday

h 1 2 3 1 2 3 1 2 3 1 2 3

DF2M-
LSTM

MSPE 3.753 4.164 4.513 8.928 11.60 17.26 7.672 8.088 8.954 107.5 118.8 113.6
MAPE 1.205 1.322 1.427 2.176 2.478 3.063 1.726 1.823 1.978 6.741 7.141 7.294

LSTM
MSPE 4.989 5.597 6.501 13.51 19.71 24.61 13.28 16.29 17.08 193.3 176.0 213.8
MAPE 1.447 1.523 1.684 2.635 3.278 3.759 2.332 2.572 2.680 9.281 9.283 10.20

(c) Comparison of DF2M-GRU and GRU
Japanese Mortality Energy Consumption Global Mortality Stock Intraday

h 1 2 3 1 2 3 1 2 3 1 2 3

DF2M-
GRU

MSPE 4.092 4.395 4.898 9.132 8.714 9.730 8.741 8.714 9.730 102.5 117.3 95.49
MAPE 1.318 1.402 1.537 2.204 1.951 2.110 1.967 1.951 2.110 6.675 7.339 6.649

GRU
MSPE 8.800 8.552 10.41 15.55 24.02 17.53 14.12 15.33 17.53 414.0 445.9 427.2
MAPE 1.691 1.809 1.865 2.872 3.518 2.597 2.211 2.403 2.597 14.12 14.66 14.07

(d) Comparison of DF2M-ATTN and ATTN
Japanese Mortality Energy Consumption Global Mortality Stock Intraday

h 1 2 3 1 2 3 1 2 3 1 2 3

DF2M-
ATTN

MSPE 3.608 3.839 3.985 14.22 18.70 19.03 14.22 18.70 19.03 104.2 103.4 93.93
MAPE 1.119 1.203 1.264 2.741 3.141 3.163 2.741 3.141 3.163 6.695 6.646 6.427

ATTN
MSPE 13.44 14.85 16.17 17.03 17.79 18.24 39.52 41.83 43.95 103.4 98.39 91.21
MAPE 3.166 3.363 3.546 3.130 3.216 3.268 5.332 5.506 5.643 6.579 6.392 6.257



Conclusion

▶ Introduced DF2M, a deep Bayesian nonparametric approach
for high-dimensional functional time series.

▶ Combines Indian Buffet Process, Factor Model, Gaussian
Process, and Deep Neural Networks.

▶ Captures non-Markovian and nonlinear dynamics while
maintaining explainability.

▶ Superior predictive performance compared to conventional
deep learning models.

▶ Achieves explainability in neural network utilization.
▶ Efficient computational approach with proposed inference

algorithm.
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