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Mool

Graph Convolutional Networks (GCNs)

Feature Smoothing
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Connected nodes have similar features

GCNs excel at handling graph-structured data, with most methods relying on their feature smoothing operations.
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. Background

What kind of graph data does GCN expect?
GCN assumed label distribution -

\/ \/

GCNs assume that Connect nodes are highly likely to share the same labels. (i.e., label smoothness
assumption)(Zhang et al., 2021)

Question:
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. Background

For nodes with unknown labels in the graph, the upper bound of the GCN’s generalization ability

reaches optimal if the true labels of these nodes are equal to the labels generated by the LPA.

® Theorem 1 establishes the link between the output of LPA and the expected label distribution of GCN (i.e.,
label smoothness assumption)
4 N

1. GCN feature smoothing: Y ¢s = AL LP(X) 2. GCN label smoothness assumption: Ylp — ;&LY

Vooc = {Vilargmax(Y fs:) # argmax(Yip:),t € [n]} Vye =V —Vooco

006

Cora Citeseer Pubmed

Answer the Question:
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Unlabeled Nodes
UC Nodes e OOC Nodes

ST AA AN .
Nodes that achieve label smoothing 3| g Nodes affected by GCN's feature
assumptions using GCN feature sgs smoothing operation conflict with the
smoothing operations are under the el SSSSSSSSSSSSN label smoothness assumption, making
control of GCN. ® 5o it difficult to correct representation
i under the GCN framework.
Character of OOC nodes.
(i) Nodes with few neighbors (left figure).
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(i) Nodes away from labeled nodes (right figure).
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For Nodes with Few Neighbors

Virtual Neighbor Generation
Use X, (v € V) as a condition, and to learn the neighbor distribution of X,,(u € N,,) (L|u et al., 2022, Sohn et al., 2015).

_______________

Virtual Neighbor Generation \

T

Neighbor of X

Lrrpo = —KL(q(z | X.X,)||p(z | X,))
+ Eqzx,,x,) (0(Xu | Xy, 2))

This process allows us to obtain the node v’s virtual neighbor feature vector X.,.

Potential Real Neighbor Identification

Virtual nodes contain only first-order information and can't affect message passing. We posit potential non-
directly connected neighbors can augment message passing for OOC nodes if:

* They are in the same subspace. T e

* Their neighbors are in the same subspace.
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. Method

Nodes away from labeled nodes

Given an undirected graph G(V, E) has n nodes and m edges. Assuming there are q nodes in the graph with
labels selected uniformly at random. The occurrence probability of nodes that are not affected by labels with
a two-layer GCN is equal to

" q " q : ] 2m = ] 2(m —1)
( _E)( _n—l)l:l[( _n(n—l)—Zi)l:q[( _n(n—l)—Zi)

® Theorem 2 tells us the occurrence probability of unaffected by labeled nodes is negatively correlated with
the number of labels and total edges.

Number of UC nodes Cora Citeseer Pubmed

¢ DSKIIN-graph DSKNNGraph 60 711 720
o ra

® 1. Can reduce the probability of OOC nodes. Combine Graih 833 840 879

® 2. Allowing flexible addition or removal of edges. Improve Ratio 31.6%  732%  24.2%

Solution: we just need to make sure that the number of edges in constructing the DSKNN graph is
much larger than the average degree of the original graph.
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Overall Architecture

P> Concatenate virtual neighbors” feature as input feature:

_______________________________

-

EE_ D <]_) |YI E“}E X@'Yl DSKNN % E ? — X @ X
:\ ] sl . Propagating the features on the original graph and the

‘--f%:gh:b(’:o:”i """" TR —— ’ DSKNN graph :

[ | L+ N Lo

S N B B, — AHCOWO), B - S

s ; 2 | rowemE sl © P> Adaptive node-level assembling:

| 3 E%E

| P 0.13

N P g FClayer-}Zl 0.26| © H(l) = dlag (A(()l)) ng)z —|— dlag (A( )) H&ls), A(l) ‘I‘ A(l) = 1
e B A = (i) (H2)) XY = o (1)
@ Concatenate O Element-wise product @ Node-wise weighted sum |:A(l) A ( l)i| _ I[A(()D)Agl)} ”

0771 max( [A((]l),)\gl)} 2,6)
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. Method

Some Problem

Fundamental Assumption in Semi-Supervised Learning An accomplish way

In semi-supervised learning, the classifier's decision boundary Ensuring the classifier outputs low-entropy
should avoid high-density regions of the data distribution. predictions on unlabeled data.
In Adaptive node-level assembling I Violation I
qu Entropy Reduction Loss:
H(Aps + (1 = Dpz) 2 AH(p1) + (1 — )H(p2) 1 &
Ered:_z /Zy] _’_I[ ||YO7“Z YdsH2)
® \When the output layer assembles the logits, the entropy =1

will increase beyond a linear combination of the two view.
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. Experiments

Main Results

1956

Pubmed

Datasets Cora Citeseer Computers Photo Physics CS
GCN 81.5+082  709+071  79.0+052  82.6+243  91.2+121 92.8+100 91.1+052
GAT 83.0+041 71.1+051  79.1+044  78.0+19.0 85.7+203 92.54094 90.5+0.61

APPNP 83.3+0.51 7254062  79.9+032  82.24213  90.8+132 93.7+069 92.5+032

GCN-LPA 83.1+073  72.6+080 78.6+132  83.5+141  91.1+083 93.6+106 91.8+0.42
DAGNN 84.4+057  73.3+065 80.5+053 83.5+128  92.0+122 94.0+t062 91.5+033
wGCN 83.1 031  73.9 4046 80.8+025 83.6+086  92.4+018 92.8+023 89.3+0.14
AERO-GNN 839 +o0s51  73.2 068 80.6+055 83.3 072  91.1+083 93.3+065 92.0+0.71
Ours 84.8+053 753 +041 81.7+088 84.0+125 92.9+056 94.3+0.25 93.4+0.8

® In the node classification task, our proposed method outperformance the SOTA baseline.

Datasets Cora Citeseer Pubmed Computers Photo Physics CS
UCnodes OOC nodes UCnodes OOCnodes UCnodes OOCnodes UCnodes OOCnodes UCnodes OOCnodes UCnodes OOCnodes UCnodes OOC nodes
GCN 87.01 06 7395 +11  77.75+05 62.66+0.8 83.66+03 67.05+1.0 87.41+05 70.13+038 96.58+0.7 78.02+1.4 97.01+0.2 86.45+03 95.65+0.4 84.53+ 0.6
APPNP 8747+ 05 76.21+13 78.21+06 67.59+009 84.36+05 67.96+1.1 8723 +09 69.84+26 9598+0s8  T78.13+15 97.13+05 89.25+09 9531+02 87.01 £o0s
DAGNN 87.80 +o05 78.52+15 78.33+07 @ 68.27+093 84.48+0s 68.32+07 88.21+07 71.97+15 95.36+08 80.64+1.2 97.16+05 89.98+0.7 94.75+0.2 87.53+07
AERO-GNN  87.74+03 77.38+038 78.14+08 68.78+1.0 85.38+03 69.79+1.1 88.56+0.8 71.72+13 96.34+06  77.65+ 1.0 97.03+04 88.65+09 95.89+06 86.01+1.1
Ours 87.70+0s5 79.26+ 0.7 78.39+05 72.04+15 85.54+03 7316 +10  88.12+08 73.39+15 95.57+05 82.75+08 97.12+0.2 91.15+03 95.53+0.1 89.51+03

® Most methods (including ours) show similar effectiveness on UC nodes. The key factor differentiating their
performance is their behavior on OOC nodes. Thus, research on GCNs should primarily focus on OOC nodes.

® Our proposed method significantly improves the performance of GCNs on OOC nodes.

Jinchengo
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Experiments

Adversarial Robustness-Metaattack

Test Accuracy(%)
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® Our proposed method has strong adversarial robustness

Test Accuracy(%)
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Analysis Generalization Ability
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® Qur proposed improves the GCN’s generalization ability.
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Analysis Adaptive Node-level Assembling
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® The OOC nodes have heavier average weights in the second layer of the DSKNN side compared to the UC
nodes, suggesting greater benefit for OOC nodes from the DSKNN side.
® The weights learned by each layer are differentiated.
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Analysis Adaptive Node-level Assembling
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Ablation Cora Citeseer Pubmed

DaGCN 84.840.53 75.3+041 81.7+0.88
-w/o VNG 84.2+096 74.5+066 81.2+1.00
-w/o RNG 83.6+046 73.6+037 80.7+0.62
-w/o ERL  84.0+056 73.8+072 81.34+0.75

GCN 81.5+082 70.9+071  79.040.52
® All components are valid. ® the temperature parameter 71 is significantly important,
® The DSKNN-graph part played the biggest effect. since when T is in the interval [0.4, 0.8], the model

performance maintains an excellent level. The
DSKNN-graph part played the biggest effect.

® if we ensure that 1 is in a suitable range, the selection
of B is not sensitive.
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. Summary

Conclusion

® vanilla GCN has been able to achieve high-quality representation learning on UC nodes.
The advanced model should focus on improving OOC nodes to promote GCN.

® \We provide algorithms for locating OOC nodes and provide directions and models to
promote OOC nodes.

Future Work

® Optimize graph structure from the perspective of reducing OOC nodes and Generalization.

Jincheng 2024/6/13 15/15
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