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o Remarkable success in various tasks, e.g., NPL, CV [2].
e Significant computational overhead: a consequence of root-finding.

o Limited theoretical understanding of DEQs: the connections and
differences between implicit DEQs and explicit models

o whether general DEQs have advantages over explicit networks, or
e whether an equivalent explicit NN exists for a given implicit DEQ.
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DEQ Models

Vanilla DEQs

Let X =[xy, ,@,] € RP*™ denote the input data, consider a vanilla DEQ with
output f(a;) given by
flai)=a"z], (1)

where a € R™ and zg*) 2 im0 zi(l) € R™ with

1

20—
m

1) (aaAzl-(lfl) + G'bB:Bi) € R™, forl > 1, 2)

for some appropriate initialization 29 Here, A € R™*™ and B € R™*P are the

i
DEQ weight parameters, o,,0;, € R are constants, and ¢ is an element-wise
activation. Note that 2z can also be determined as the equilibrium point of

1
z;,k = 7(;5(0'(1142:;( + O’bB.’Di) .

vm
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Weight and Activation

Assumption

(1) Initialization: a € R™, A € R™*™ and B € R™*? are initialized with i.i.d.
entries of zero mean, unit variance, and finite fourth-order moment;

(2) Weak differentiablility: ¢ is centered and L1-Lipschitz, and
maxXge{0,1,2,3,4} IE[p®) (€)]] < oo

(3) Variance parameter: 0> < 1/(4L?) and o2 < 2/(E[(¢*(7€))"]) for 7 > 0
and & ~ N(0,1).

Remark
(i) hold for commonly-used initialization;

(i) hold for commonly-used smooth, e.g., Tanh, and piecewise linear activations,
e.g., ReLU and Leaky RelU;

(i) guarantee the existence and uniqueness of the equilibrium point.
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GMM Data

Assumption (GMM Data)

For @i € Ca, \/pTi ~ N (pa,Ca),a € [K]. Forn,p both large that (i) p = ©(n) and
ne = O(n); (i) ||a|| = O(1); (iii) for C° = Zle 72 C, and C; = C, — C°, we have
IC.]| = O(1), tr Cg = (’)(\/ﬁ) and tr(CoCh) = O(p).

Remark
(i) Assumptions of GMM are non-trivial, widely studied in LDA, SVM, and NNs;
(i) GMM is a universal approximator, can approximate any distribution to an arbitrary error;

(i) For large p and n, data generated from generative models, e.g., GANs, behaves as GMM [4].

High-dimensional Statistics
@ Label information: J = [j1,--- ,jx] € R"*EK,  [ju]; = 1z,eCas
@ Second-order data fluctuation vector: v = {||z; — E[z;]||?> — E[||lz; — E[z;]||?]}1~, € R™;
@ Second-order GMM statistics: T = {tr CaCb/p}észl € REXK ¢ = {trC¢/\/p} € RE;

@ A fixed point: 9 = \/m, and 7. be the fixed point to the equation

Te = \/CT(QLE [#2 (1)) + o2, € ~N(0,1). 3

™ = — — Ty

Zenan Ling (lingzenan®hust.edu.cn) ICML 2024 2024/07 5/15



-]
Implicit CK and NTK

Conjugate Kernels (CKs) and Neural Tangent Kernels (NTKs): an analytical
assessment of the convergence and generalization properties of wide NNs.

Zenan Ling (lingzenan®hust.edu.cn) ICML 2024 2024/07 6/15



-]
Implicit CK and NTK
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assessment of the convergence and generalization properties of wide NNs.

Implicit-CK [3]
G* = lim;_,oo GY, where Gl(é) = Ey, v)[@(ur)é(vi)] with

2%; 2%2}) and Az(-? = agGE;_l) + oz xj, for [ > 1, and
Jr 73
G(O) = (z(o))—rz(.o)

ij i J

(uz,vi) ~N | O,
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Implicit-CK [3]
G* = lim;_,oo GY, where Gl(é) = Ey, v)[@(ur)é(vi)] with

(1) (1) —
(. v) ~ N |0, ::f%) 22%}) and Az(-? = agGEé b4 o2z]x;, for 1 > 1, and
cO _ (Z@)fr "

i A Zj

Implicit-NTK

K* =iy KO, where K = 5217 (GU VT, G7), with

G) = 02E ) [¢ (u)¢' ()], s0 that K, = G;/(1 - G).
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High-dimensional Equivalents

Theorem (High-dimensional approximation of Implicit-CKs [5])

Let Assumptions 1 and 2 hold, and let the activation ¢ be centered s.t.,
E[p(7.€)] = 0 for £ ~ N(0,1). It holds that |G* — G|| = O(n~/%) where

G = O[*JXTX + VC*VT + (’Y*z - 70204*,1)Im
a*,QttT + a*,ST Qe ot

T
Qi ot Q2
scalars 7y, Qi 1, 0tx 2, s 3 > 0 are defined, for § ~ N(0,1), as

. Non-negative

with V. = [J/\/f), 1/:] and C, = {

R — e,
Y« = E[¢ ( *5)]’ *,1 1_ JgE[QS’(T*E)P’

E"(nOP o _ B (noP(odan +op)
41— oY () " T o1 = TR ()

Qs 2 =

with a4 = (1 — SE[(¢2(7.€))"]) o2,

= = = — SNl
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High-dimensional Equivalents

Theorem (High-dimensional approximation of Implicit-NTKs)
Under Lhe same settings and notations of Theorem 1, it holds that
HK* — KH = O(nil/z) where
K=3.,.X"X+VD. V" + (5.2 - 12811,

ﬂ*,2tt—r + ﬁ*,ST ﬂ*,Qt
ﬁ*,2t—r 5*,2

non-negative scalars k., B« 1, B2, Bx,3 > 0 defined as

with V defined in Theorem 1, D, = , as well as

K. — Tx B _ a*,l
VI (ne)? T 1-a2E[g(n)]?
By = Q2 Busg = 3+ Be (02E[¢" (1.6)]* + o)
2T 1 oZEB[Y () T 1 — o2E[¢/ (1,€)]2 ’

for & ~ N(0,1).
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High-dimensional Equivalents

e

]

=1
T

Figure: Evolution of relative spectral norm error
IG* — G||/||G*|| w.r.t. sample size n, for DEQs
with different activations and ag = 0.2, on
two-class GMM, p/n = 0.8,

Ha = [08(4—1);8;0p—8a+7], and
Co=(1+4+8(a—-1)//p)1Ip,ac{1,2}.
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Remark

As, the “equivalent” Implicit-CK and NTK matrices, G and K,
(1) depend on the input GMM data (X)), their class structure (J) and
higher-order statistics (¢ and T'), explicitly ; and

(2) are independent of the distribution of the weight matrices A and B; and

(3) depend on o2, O'g, and ¢ only via four scalars . 1-3,7«, and By 1-3, ks,

explicitly.
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High-dimensional Equivalents

Theorem (High-dimensional approximation of Explicit-CKs [6])

Consider a fully-connected NN model mz(»l) = ﬁal(ﬂﬁ$§l_l)), foril=1,---,L,
with GMM input. For the corresponding Explicit-CK matrix X", it holds that
=0 — =) = 0(n1/2) where

SV 2@, XTX+VOVT + (72 — 12a0)T,

&ljgtt—r + &l,gT &I’Qt
apat’ Qg2
scalars &1,1,&17275173 defined recursive/y as &0,1 = &0,4 = 1, &0,2 = &0,3 = 0, and

with V' defined in Theorem 1, 6‘1 = . Non-negative

- - - - - - 1 - -
a1 = E[o](F—18)?qu-1,1, du2 = E[o](7—18)?du—12 + ZE[UZ'(T1—1§)]20412_1,4,

- - - 1 ~ ~
a3 = E[oj(7i-18) P13 + iE[a;’(n_lg)]Qal?_m,

with &1.4 = E[(02(71_1€))")@1_1.4, for € ~ N'(0,1).
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High-dimensional Equivalence between Implicit and Explicit NNs

Observation

The high-dimensional approximation G of the Implicit-CK takes a consistent form
with that (£") of the Explicit-CK.
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Observation

The high-dimensional approximation G of the Implicit-CK takes a consistent form
with that (f(l)) of the Explicit-CK.

Key idea

Given a DEQ), design activations of an L-layer explicit NN s.t. its Explicit-CK
3 shares the same coefficients as the Implicit-CK G*, i.e.,
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It follows from Theorem 3 that, for the single-hidden-layer ENN, one must have
9 = %&173. On the contrast, a2 = %01*73 does not necessarily hold for all
DEQs. As such, for a given DEQ),

o if a0 = %O(*,g, a single-hidden-layer ENN suffices to match the given DEQ;

o if a2 # v 3, an ENN with (at least) two hidden layers is required.
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Designing Equivalent Explicit NNs via CK matching

a(rF 1 - 2
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Figure: CKs of implicit DEQs and explicit NNs are close, if the activations of ENNs are
constructed according to our Examples.

Example
@ For a given Tanh-DEQ, use a single-hidden-layer H-Tanh-ENN with

JH—Tanh(«T) = ax- 1—c§z§c +ac- (1126 - 1z§76),

st || Gan = Bl = O(n™172),
@ For a given ReLU-DEQ), use a two-hidden-layer L-ReLU-ENN with

ar—b
US-)ReLU (z) = max(aiz, biz) — ——

V2r

T, 1=1,2,

* 2 _
st [|Ghew — E 3yl = 0(n™12).
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Experiments
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Figure: Classification accuracies of implicit DEQs and explicit
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Take-away

Take away message:
o for GMM input data, random matrix theory (RMT) allows for precise
characterization of (the CKs and NTKs of) random explicit and implicit NNs;

@ explicit connections between implicit and explicit NNs: high-dimensional
“equivalence”, making implicit NNs explicit and significantly reducing the
computational overhead;

o future work: beyond the “lazy” CK/NTK regime = feature learning;

@ future work: extends to another typical implicit models, Neural ODEs, e.g.,
diffusion models, providing theoretical understanding and accelerating the
sampling process.
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