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Deep Equilibrium Models

Explicit models: z(l+1) = f
(l)
θ (z(l);x), for l = 0, 1, · · · , L− 1

Implicit Deep Equilibrium Models (DEQs)1: z∗ = fθ(z
∗;x)

a typical “single-layer” implicit model
⇒ an infinite-depth weight-tied model with an input injection
Memory efficient: DEQs solve an equilibrium point directly and compute
gradients with implicit differentiation.
Universality of DEQs: any deep explicit NN can be reformulated as a
“single-layer” DEQ.
Remarkable success in various tasks, e.g., NPL, CV [2].
Significant computational overhead: a consequence of root-finding.

Limited theoretical understanding of DEQs: the connections and
differences between implicit DEQs and explicit models

whether general DEQs have advantages over explicit networks, or
whether an equivalent explicit NN exists for a given implicit DEQ.

1Bai, S. et al. Deep Equilibrium Models. in NeurIPS (2019).
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DEQ Models

Vanilla DEQs
Let X = [x1, · · · ,xn] ∈ Rp×n denote the input data, consider a vanilla DEQ with
output f(xi) given by

f(xi) = a
⊤z∗i , (1)

where a ∈ Rm and z(∗)i ≜ liml→∞ z
(l)
i ∈ Rm with

z
(l)
i =

1√
m
ϕ
(
σaAz

(l−1)
i + σbBxi

)
∈ Rm, for l ≥ 1, (2)

for some appropriate initialization z(0)i . Here, A ∈ Rm×m and B ∈ Rm×p are the
DEQ weight parameters, σa, σb ∈ R are constants, and ϕ is an element-wise
activation. Note that z∗i can also be determined as the equilibrium point of

z∗i =
1√
m
ϕ (σaAz

∗
i + σbBxi) . (3)
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Weight and Activation

Assumption

(1) Initialization: a ∈ Rm, A ∈ Rm×m and B ∈ Rm×p are initialized with i.i.d.
entries of zero mean, unit variance, and finite fourth-order moment;

(2) Weak differentiablility: ϕ is centered and L1-Lipschitz, and
maxk∈{0,1,2,3,4} |E[ϕ(k)(ξ)]| < ∞;

(3) Variance parameter: σ2
a < 1/(4L2

1) and σ2
a < 2/(E[(ϕ2(τξ))′′]) for τ > 0

and ξ ∼ N (0, 1).

Remark
(i) hold for commonly-used initialization;
(ii) hold for commonly-used smooth, e.g., Tanh, and piecewise linear activations,

e.g., ReLU and Leaky ReLU;
(iii) guarantee the existence and uniqueness of the equilibrium point.
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GMM Data

Assumption (GMM Data)
For xi ∈ Ca, √pxi ∼ N (µa,Ca), a ∈ [K]. For n, p both large that (i) p = Θ(n) and

na = Θ(n); (ii) ∥µa∥ = O(1); (iii) for C◦ ≡
∑K

a=1
na
n
Ca and C◦

a ≡ Ca −C◦, we have
∥Ca∥ = O(1), trC◦

a = O
(√

p
)

and tr(CaCb) = O(p).

Remark
(i) Assumptions of GMM are non-trivial, widely studied in LDA, SVM, and NNs;
(ii) GMM is a universal approximator, can approximate any distribution to an arbitrary error;

(iii) For large p and n, data generated from generative models, e.g., GANs, behaves as GMM [4].

High-dimensional Statistics
Label information: J ≡ [j1, · · · , jK ] ∈ Rn×K , [ja]i = 1xi∈Ca ;
Second-order data fluctuation vector: ψ ≡ {∥xi − E[xi]∥2 − E[∥xi − E[xi]∥2]}ni=1 ∈ Rn;
Second-order GMM statistics: T = {trCaCb/p}Ka,b=1 ∈ RK×K , t = {trC◦

a/
√
p} ∈ RK ;

A fixed point: τ0 ≡
√

trC◦/p, and τ∗ be the fixed point to the equation

τ∗ =
√

σ2
aE [ϕ2(τ∗ξ)] + σ2

b τ
2
0 , ξ ∼ N (0, 1).
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Implicit CK and NTK

Conjugate Kernels (CKs) and Neural Tangent Kernels (NTKs): an analytical
assessment of the convergence and generalization properties of wide NNs.

Implicit-CK [3]

G∗ = liml→∞G
(l), where G(l)

ij = E(ul,vl)[ϕ(ul)ϕ(vl)] with
(ul, vl) ∼ N

0,

Λ
(l)
ii

Λ
(l)
ij

Λ
(l)
ji

Λ
(l)
jj


 and Λ

(l)
ij = σ2

aG
(l−1)
ij + σ2

bx
⊤
i xj , for l ≥ 1, and

G
(0)
ij = (z

(0)
i )⊤z

(0)
j .

Implicit-NTK

K∗ = liml→∞K
(l), where K(l)

ij =
∑l+1

h=1

(
G

(h−1)
ij

∏l+1
h′=h Ġ

(h′)
ij

)
, with

Ġ
(l)
ij = σ2

aE(ul,vl)[ϕ
′(ul)ϕ

′(vl)], so that K∗
ij ≡ G∗

ij/(1− Ġ∗
ij).
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ij).

Zenan Ling (lingzenan@hust.edu.cn) ICML 2024 2024/07 6 / 15



Implicit CK and NTK

Conjugate Kernels (CKs) and Neural Tangent Kernels (NTKs): an analytical
assessment of the convergence and generalization properties of wide NNs.

Implicit-CK [3]

G∗ = liml→∞G
(l), where G(l)

ij = E(ul,vl)[ϕ(ul)ϕ(vl)] with
(ul, vl) ∼ N

0,

Λ
(l)
ii

Λ
(l)
ij

Λ
(l)
ji

Λ
(l)
jj


 and Λ

(l)
ij = σ2

aG
(l−1)
ij + σ2

bx
⊤
i xj , for l ≥ 1, and

G
(0)
ij = (z

(0)
i )⊤z

(0)
j .

Implicit-NTK

K∗ = liml→∞K
(l), where K(l)

ij =
∑l+1

h=1

(
G

(h−1)
ij

∏l+1
h′=h Ġ
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High-dimensional Equivalents

Theorem (High-dimensional approximation of Implicit-CKs [5])
Let Assumptions 1 and 2 hold, and let the activation ϕ be centered s.t.,

E[ϕ(τ∗ξ)] = 0 for ξ ∼ N (0, 1). It holds that
∥∥G∗ −G

∥∥ = O
(
n−1/2

)
where

G ≡ α∗,1X
⊤X + V C∗V

⊤ + (γ∗
2 − τ20α∗,1)In,

with V =
[
J/

√
p, ψ

]
and C∗ =

[
α∗,2tt

⊤ + α∗,3T α∗,2t
α∗,2t

⊤ α∗,2

]
. Non-negative

scalars γ∗, α∗,1, α∗,2, α∗,3 ≥ 0 are defined, for ξ ∼ N (0, 1), as

γ∗ =
√

E[ϕ2(τ∗ξ)], α∗,1 =
σ2
bE[ϕ′(τ∗ξ)]

2

1− σ2
aE[ϕ′(τ∗ξ)]2

,

α∗,2 =
E[ϕ′′(τ∗ξ)]

2

4(1− σ2
aE[ϕ′(τ∗ξ)]2)

α2
∗,4, α∗,3 =

E[ϕ′′(τ∗ξ)]
2(σ2

aα∗,1 + σ2
b )

2

2(1− σ2
aE[ϕ′(τ∗ξ)]2)

(4)

with α∗,4 = (1− σ2
a

2 E[(ϕ2(τ∗ξ))
′′])−1σ2

b .
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High-dimensional Equivalents

Theorem (High-dimensional approximation of Implicit-NTKs)
Under the same settings and notations of Theorem 1, it holds that∥∥K∗ −K

∥∥ = O
(
n−1/2

)
where

K ≡ β∗,1X
⊤X + V D∗V

⊤ + (κ∗
2 − τ20β∗,1)In,

with V defined in Theorem 1, D∗ =

[
β∗,2tt

⊤ + β∗,3T β∗,2t
β∗,2t

⊤ β∗,2

]
, as well as

non-negative scalars κ∗, β∗,1, β∗,2, β∗,3 ≥ 0 defined as

κ∗ =
τ∗√

1− σ2
aE[ϕ′(τ∗ξ)2]

, β∗,1 =
α∗,1

1− σ2
aE[ϕ′(τ∗ξ)]2

,

β∗,2 =
α∗,2

1− σ2
aE[ϕ′(τ∗ξ)]2

, β∗,3 =
α∗,3 + β∗,1(σ

2
aE[ϕ′′(τ∗ξ)]

2 + σ2
b )α∗,1

1− σ2
aE[ϕ′(τ∗ξ)]2

,

for ξ ∼ N (0, 1).
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High-dimensional Equivalents
DEQs are Almost Equivalent to Not-so-deep Explicit Models for High-dimensional Gaussian Mixtures
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Figure 1. Evolution of relative spectral norm error ∥G∗ −
G∥/∥G∗∥ w.r.t. sample size n, for DEQs in Definition 2.1
with different activations and σ2

a = 0.2, on two-class GMM,
p/n = 0.8, µa = [08(a−1); 8;0p−8a+7], and Ca = (1 + 8(a−
1)/

√
p)Ip, a ∈ {1, 2}.

Example 3.10 (DEQ with Tanh activation). For a given
implicit DEQ (denoted Tanh-DEQ) in Definition 2.1 with
Tanh activation, i.e., ϕ(x) = Tanh(x), a single-hidden-
layer equivalent explicit NN (denoted H-Tanh-ENN) as
in Definition 3.6, with Hard-Tanh-type activation:

σH-Tanh(x) ≡ ax · 1−c≤x≤c + ac · (1x≥c − 1x≤−c), (19)

with undetermined parameters a > 0, c ≥ 0, can be con-
structed so that their CKs, denoted as G∗

Tanh and Σ
(1)
H-Tanh,

satisfy ∥G∗
Tanh−Σ

(1)
H-Tanh∥ = O(n−1/2), by solving a system

of nonlinear equations induced from Eq. (18).

Example 3.11 (DEQ with ReLU activation). For a given im-
plicit DEQ (denoted ReLU-DEQ) as in Definition 2.1 with
centered ReLU activation, i.e., ϕ(x) = ReLU(x)−τ∗/

√
2π,

a two-hidden-layer equivalent explicit NN (denoted L-
ReLU-ENN) with Leaky-ReLU-type activation:

σ
(l)
L-ReLU(x) ≡ max(alx, blx)−

al − bl√
2π

τ̃l, l = 1, 2, (20)

with undetermined parameters al ≥ bl ≥ 0, can be con-
structed so that their CKs, denoted as G∗

ReLU and Σ
(2)
L-ReLU,

satisfy ∥G∗
ReLU −Σ

(2)
L-ReLU∥ = O(n−1/2), by solving a sys-

tem of polynomial equations induced from Eq. (18).

4. Experiments
In this section, we provide numerical experiments to validate
our theoretical results. We consider both Gaussian mixture
data and samples drawn from commonly used real-world
datasets such as MNIST (LeCun et al., 1998), Fashion-
MNIST (Xiao et al., 2017), and CIFAR-10 (Krizhevsky,
2009). The experiments are conducted with a repetition
of five trials, and we report both the average performance
and accompanying error bars. Due to space limitation,

0
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1
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Tanh H-Tanh
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Figure 2. Left: Visualization of activations of DEQs (dashed)
and those of equivalent explicit NNs (solid). Right: Evolution
of relative spectral norm errors ∥G∗

Tanh − Σ
(1)
H-Tanh∥/∥G

∗
Tanh∥ and

∥G∗
ReLU − Σ

(2)
L-ReLU∥/∥G

∗
ReLU∥ w.r.t. sample size n on GMM as

in Figure 1 for Example 3.10 (red) and Example 3.11 (blue),
respectively.

we refer the readers to Appendix E for additional exper-
iments. The code to reproduce the results in this section is
available at https://github.com/StephenLi24/
INN_eqvi_ENN.

High-dimensional approximations of Implicit-CKs and
NTKs. Figure 1 compares the difference between Implicit-
CKs G∗ and their high-dimensional approximations G
given in Theorem 3.3, on binary Gaussian mixture data,
for DEQs as Definition 2.1 with four commonly-used acti-
vations: ReLU, Tanh, Swish, and Leaky-ReLU (L-ReLU).
The computation of G follows from its definition in The-
orem 3.3. For the Implicit-CK G∗, we take an estimation
approach similar to that in Gao et al. (2023): each element
G∗

ij is estimated as (z∗i )
⊤z∗j using a high-dimensional DEQ

defined in Eq. (3) with m = 212 and z∗i estimated through
a large number l of fixed-point iterations defined in Eq. (2).
See Gao et al. (2023) for a convergence analysis of this
estimation (to G∗) w.r.t. the width m and the number l of
fixed-point iterations. We refer the interested readers to Cho
& Saul (2009); Tsuchida et al. (2018); Novak et al. (2019)
for fast and efficient estimation/computation of CKs and
NTKs.

We observe from Figure 1 that, for different activations,
as n, p increase, the relative errors consistently and signifi-
cantly decrease, as in line with our Theorem 3.3. The exper-
imental observations regarding NTKs and Theorem 3.4 are
similar and are placed in Appendix E.1. Possibly surpris-
ingly, the high-dimensional approximations of Implicit-CKs
and Implicit-NTKs, despite derived here for GMM in Theo-

7

Figure: Evolution of relative spectral norm error
∥G∗ −G∥/∥G∗∥ w.r.t. sample size n, for DEQs
with different activations and σ2

a = 0.2, on
two-class GMM, p/n = 0.8,
µa = [08(a−1); 8;0p−8a+7], and
Ca = (1 + 8(a− 1)/

√
p)Ip, a ∈ {1, 2}.

Remark
As, the “equivalent” Implicit-CK and NTK matrices, G and K,
(1) depend on the input GMM data (X), their class structure (J) and

higher-order statistics (t and T ), explicitly ; and
(2) are independent of the distribution of the weight matrices A and B; and
(3) depend on σ2

a, σ2
b , and ϕ only via four scalars α∗,1−3, γ∗, and β∗,1−3, κ∗,

explicitly.
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High-dimensional Equivalents

Theorem (High-dimensional approximation of Explicit-CKs [6])

Consider a fully-connected NN model x(l)
i = 1√

ml
σl(Wlx

(l−1)
i ), for l = 1, · · · , L,

with GMM input. For the corresponding Explicit-CK matrix Σ(l), it holds that
∥Σ(l) −Σ

(l)∥ = O
(
n−1/2

)
where

Σ
(l)

= α̃l,1X
⊤X + V C̃lV

⊤ + (τ̃l
2 − τ20 α̃l,1)In,

with V defined in Theorem 1, C̃l =

[
α̃l,2tt

⊤ + α̃l,3T α̃l,2t
α̃l,2t

⊤ α̃l,2

]
. Non-negative

scalars α̃l,1, α̃l,2, α̃l,3 defined recursively as α̃0,1 = α̃0,4 = 1, α̃0,2 = α̃0,3 = 0, and

α̃l,1 = E[σ′
l(τ̃l−1ξ)]

2α̃l−1,1, α̃l,2 = E[σ′
l(τ̃l−1ξ)]

2α̃l−1,2 +
1

4
E[σ′′

l (τ̃l−1ξ)]
2α̃2

l−1,4,

α̃l,3 = E[σ′
l(τ̃l−1ξ)]

2α̃l−1,3 +
1

2
E[σ′′

l (τ̃l−1ξ)]
2α̃2

l−1,1,

with α̃l,4 = E[(σ2
l (τ̃l−1ξ))

′′]α̃l−1,4, for ξ ∼ N (0, 1).
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High-dimensional Equivalence between Implicit and Explicit NNs

Observation
The high-dimensional approximation G of the Implicit-CK takes a consistent form
with that (Σ(l)) of the Explicit-CK.

Key idea
Given a DEQ, design activations of an L-layer explicit NN s.t. its Explicit-CK
Σ(L) shares the same coefficients as the Implicit-CK G∗, i.e.,
τ̃L = γ∗, α̃L,i = α∗,i, i ∈ {1, 2, 3}.

Implicit- versus Explicit-CK
It follows from Theorem 3 that, for the single-hidden-layer ENN, one must have
α̃1,2 = 1

2 α̃1,3. On the contrast, α∗,2 = 1
2α∗,3 does not necessarily hold for all

DEQs. As such, for a given DEQ,
if α∗,2 = 1

2α∗,3, a single-hidden-layer ENN suffices to match the given DEQ;
if α∗,2 ̸= 1

2α∗,3, an ENN with (at least) two hidden layers is required.

Remark. Results for NTKs can be similarly obtained with our Theorem 2.
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Designing Equivalent Explicit NNs via CK matching

0
−ac

-1

0

1
ac

Tanh H-Tanh

0 400 n800 1 200

0.01

0.02

R
el

at
iv

e
er

ro
r

∗GTanh v.s. Σ(1)
H-Tanh

0

−√τ∗
2π

0

ReLU L-ReLU

0 400 n800 1 2000

0.05

0.10

R
el

at
iv

e
er

ro
r

G∗
ReLU v.s. Σ(2)

L-ReLU

Figure: CKs of implicit DEQs and explicit NNs are close, if the activations of ENNs are
constructed according to our Examples.

Example
For a given Tanh-DEQ, use a single-hidden-layer H-Tanh-ENN with

σH-Tanh(x) ≡ ax · 1−c≤x≤c + ac · (1x≥c − 1x≤−c),

s.t. ∥G∗
Tanh −Σ

(1)
H-Tanh∥ = O(n−1/2).

For a given ReLU-DEQ, use a two-hidden-layer L-ReLU-ENN with

σ
(l)
L-ReLU(x) ≡ max(alx, blx)−

al − bl√
2π

τ̃l, l = 1, 2,

s.t. ∥G∗
ReLU −Σ

(2)
L-ReLU∥ = O(n−1/2).
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Experiments
DEQs are Almost Equivalent to Not-so-deep Explicit Models for High-dimensional Gaussian Mixtures
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Figure 3. Classification accuracies of implicit DEQs and explicit models trained with SGD. Top: Evolution of classification accuracies
w.r.t. the width m of Tanh-DEQ (green), the corresponding equivalent explicit H-Tanh-ENN (blue), and Tanh-ENN (red). Bottom:
Evolution of classification accuracies w.r.t. the width m of ReLU-DEQ (green), the corresponding equivalent explicit L-ReLU-ENN
(blue), and ReLU-ENN (red). For MNIST (left) and Fashion-MNIST datasets (middle), raw data are taken as the network input; for
CIFAR-10 dataset (right) , flattened output of the 16th convolutional layer of VGG-19 are used.

rems 3.3 and 3.4, exhibits unexpected similar behavior on
realistic MNIST data, see Appendix E.2 for detailed results.

Equivalent Explicit-CKs and NTKs. In Figure 2, we
testify the results in Examples 3.10 and 3.11 by constructing
shallow explicit networks with Hard Tanh-type (H-Tanh-
ENN) and Leaky ReLU-type (L-ReLU-ENN) activation
equivalent to implicit DEQs with Tanh (Tanh-DEQ) and
ReLU (ReLU-DEQ) activation, respectively. We see that,
while the two types of NN models are different in that (i)
DEQs are implicitly defined while ENNs are explicitly
defined, and (ii) ENNs use different activations from DEQs,
their CK matrices are close in spectral norm, as long as
the activation of ENNs are carefully chosen according to
our Examples 3.10 and 3.11. This observation is again
consistent on synthetic GMM, and possibly surprisingly,
realistic MNIST data. We conjecture that this is due to a
high-dimensional universal phenomenon and that our results
hold more generally beyond GMM for, say, data drawn from
the family of concentrated random vectors (Ledoux, 2005).
We refer the interested readers to Couillet & Liao (2022,
Chapter 8) for more discussions on this point.

Test performance of explicit NNs on realistic data. To
explore the extent of the proposed high-dimensional equiv-
alence between implicit DEQs and shallow explicit NN
models across various realistic datasets, we conduct a com-

prehensive comparison of the classification accuracies using
both implicit and explicit models. The results of this compar-
ison, depicted in Figure 3, provide insights into the perfor-
mance of DEQs against carefully (or not) designed explicit
NNs. Following Examples 3.10 and 3.11, we construct a
single-hidden-layer H-Tanh-ENN and a two-hidden-layer L-
ReLU-ENN to match Tanh-DEQ and ReLU-DEQ, respec-
tively. The undetermined parameters a, c and al, bl of the
activations H-Tanh-ENN and L-ReLU-ENN are determined
by solving the system of equations induced from Eq. (18).
For comparison, we also construct a single-hidden-layer
explicit NN with Tanh activation (denoted Tanh-ENN) and
a two-hidden-layer explicit NN with ReLU activation (de-
noted ReLU-ENN). Models are trained using SGD opti-
mizer with learning rates of 10−1 for MNIST and Fashion-
MNIST, and 10−2 for CIFAR-10. The batch size is set to
128 with a maximum training epoch of 100. To ensure a
fair comparison, the hidden layer of explicit NNs share the
same width, m ∈ 25−12, as the implicit DEQs. As m in-
creases, the performance of L-ReLU-ENN closely matches
that of ReLU-DEQ, while a noticeable performance gap ex-
ists between ReLU-ENN and ReLU-DEQ. A similar result
is observed in the case of H-Tanh-ENN and Tanh-DEQ.
These trends are in line with the theoretical guaranteed of-
fered by our analysis, that focuses on CKs and NTKs and
formally holds in the m→ ∞ limit. Experiments are also
conducted using the Adam optimizer, where similar trends

8

Figure: Classification accuracies of implicit DEQs and explicit models trained with SGD.

Zenan Ling (lingzenan@hust.edu.cn) ICML 2024 2024/07 13 / 15



Take-away

Take away message:
for GMM input data, random matrix theory (RMT) allows for precise
characterization of (the CKs and NTKs of) random explicit and implicit NNs;

explicit connections between implicit and explicit NNs: high-dimensional
“equivalence”, making implicit NNs explicit and significantly reducing the
computational overhead;
future work: beyond the “lazy” CK/NTK regime ⇒ feature learning;
future work: extends to another typical implicit models, Neural ODEs, e.g.,
diffusion models, providing theoretical understanding and accelerating the
sampling process.
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