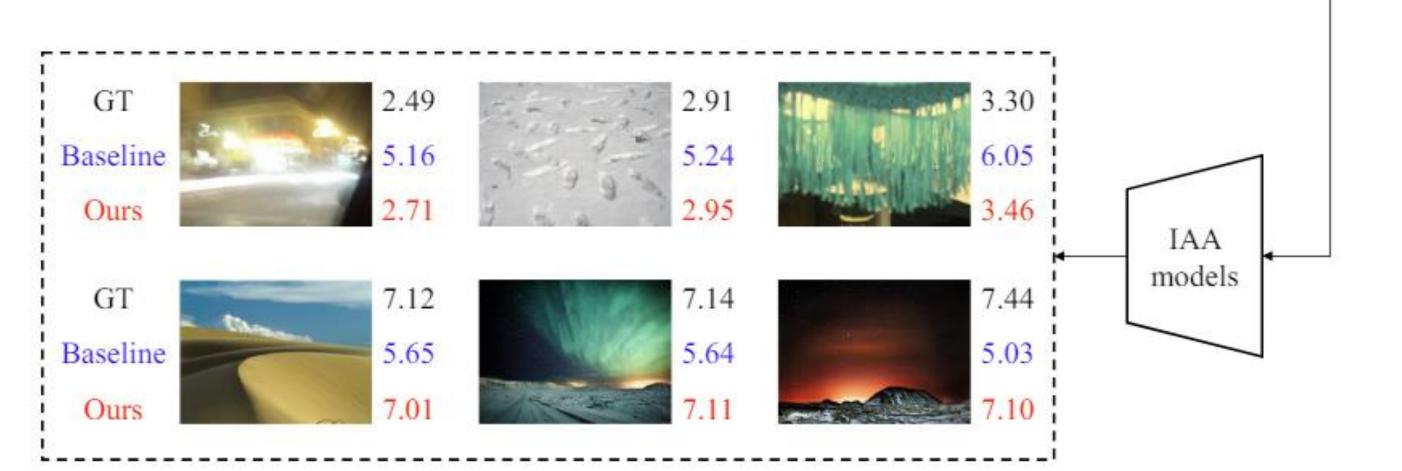


ELTA: An Enhancer against Long-Tail for Aesthetics-oriented Models

Limin Liu*, Shuai He*, Anlong Ming*, Rui Xie, Huadong Ma **Beijing University of Posts and Telecommunications**

Introduction

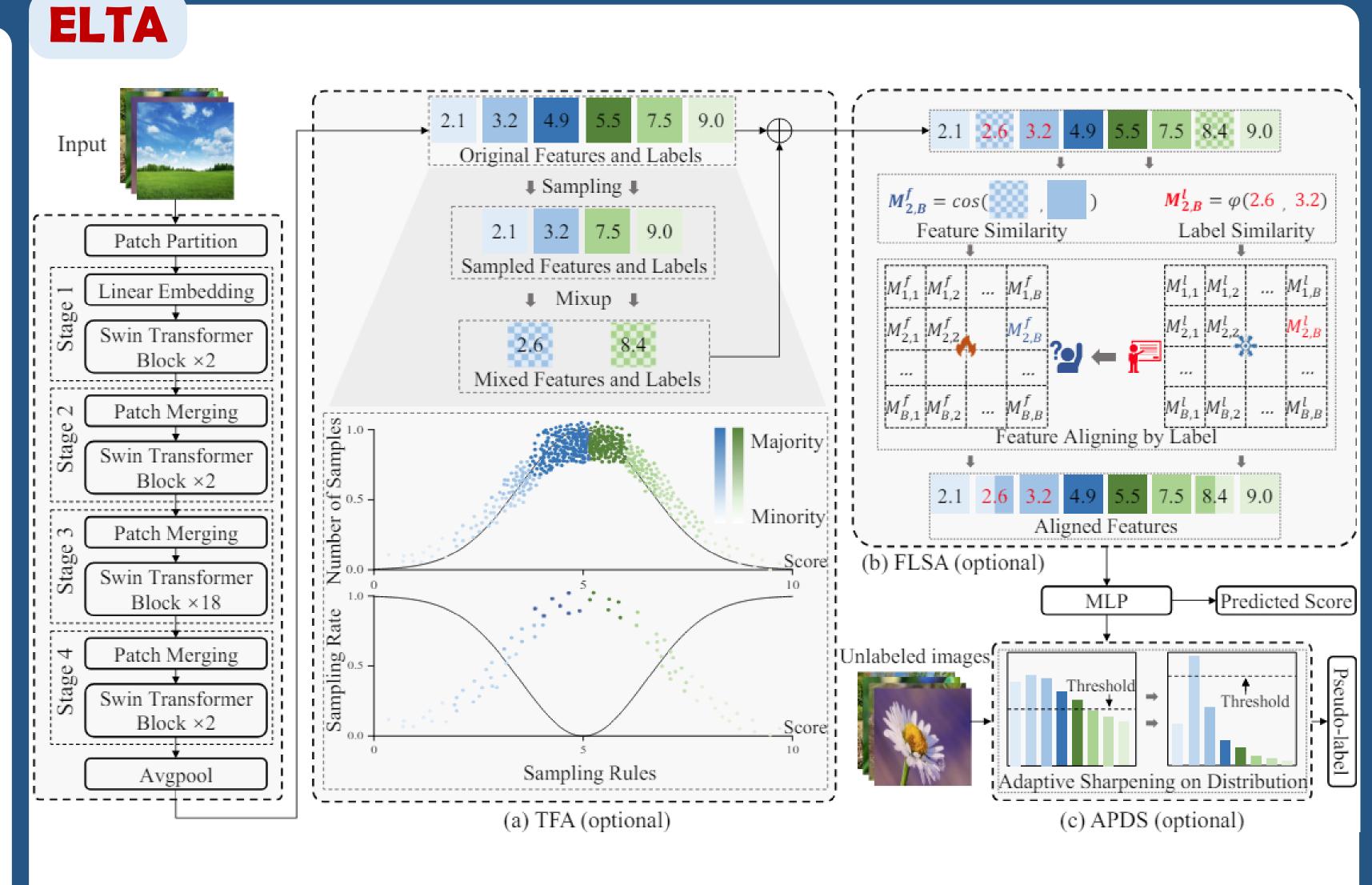

What is image aesthetics assessment?

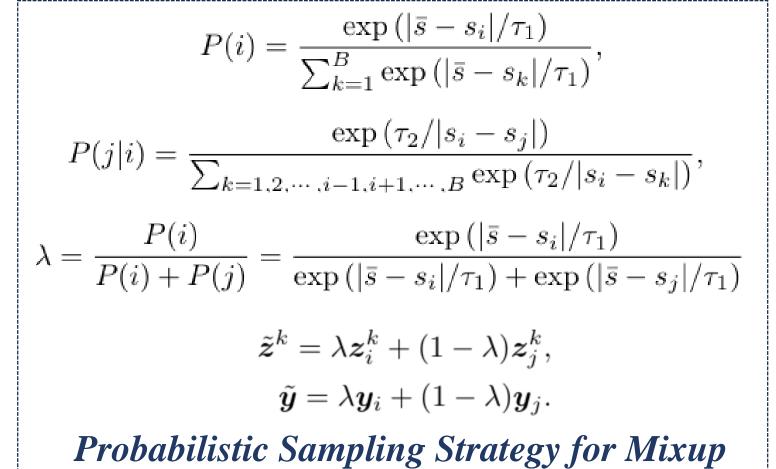
· Image aesthetics assessment (IAA) aims to assess image aesthetics based on human perception.

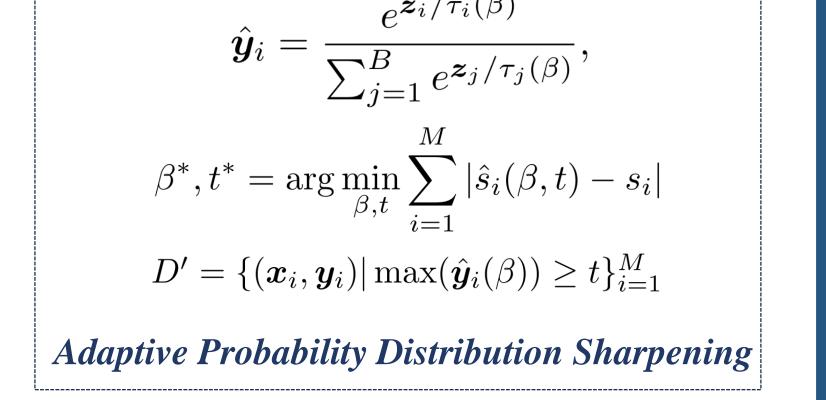
What is long-tailed IAA dataset?

· Most of the images are located in the medium scores (e.g., 4-6), with few samples of high and low scores.

Dataset	Ground-truth Range									
	Minority		Majority				Minority		Distribution	
	[0, 2)	[2, 3)	[3, 4)	[4, 5)	[5, 6)	[6, 7)	[7, 8)	[8, 10]		
AVA	6	491	7K	60K	116K	43K	3K	46		
AADB	506	826	1K	2K	880	2K	967	640		
TAD66K	180	2K	7K	11K	12K	11K	7K	1K		
PARA	0	81	1K	2K	8K	13K	3K	114		




Why the long-tail issue should be addressed?


- · Models trained on long-tailed data are biased towards majority and away from minority.
- · The bias compromises the models' generalizability and fairness, resulting in low accuracy and insufficient differentiation in model scores.

Contributions

- Long-tail in IAA: This is the first solution proposed against long-tail for IAA models.
- **ELTA**: Mitigates the data imbalance by augmenting minority features, aligning features to labels, and improving pseudo-labeling accuracy.

 $\tau_i(\beta) = e^{-\beta|\hat{s}_i - \bar{s}|},$

Experiment Results

Dataset Metric NIMA HGCN BIAA TANet MaxViT MUSIQ EAT P↑ 0.636 0.687 0.668 0.765 0.745 0.738 0.770		Ours 0.777
$\mathcal{P} \uparrow$ 0.636 0.687 0.668 0.765 0.745 0.738 0.770		
	0.735	
$S \uparrow$ 0.612 0.665 0.651 0.758 0.708 0.726 0.759		0.764
AVA $\mathcal{L}\downarrow$ 0.655 0.675 0.653 0.630 0.600 0.647 0.490	0.616	0.438
$\mathcal{M} \downarrow 0.322 0.321 0.382 0.237 0.317 0.305 0.313$	0.295	0.302
$\mathcal{H} \downarrow 0.648 0.660 0.568 0.729 0.531 0.628 0.433$	0.513	0.426
$\mathcal{P} \uparrow$ 0.711 0.734 0.733 0.742 0.748 0.761 0.767	0.740	0.772
$\mathcal{S} \uparrow$ 0.700 0.716 0.710 0.749 0.742 0.751 0.759	0.732	0.760
AADB $\mathcal{L}\downarrow$ 1.450 1.453 1.508 1.394 1.592 1.447 1.375	1.526	1.289
$\mathcal{M}\downarrow$ 0.874 0.989 0.897 0.846 0.782 0.880 0.828	0.896	0.905
$\mathcal{H} \downarrow$ 1.527 1.299 1.423 1.355 1.461 1.159 1.260	1.402	1.141
$\mathcal{P} \uparrow$ 0.405 0.493 0.431 0.531 0.513 0.517 0.546	0.507	0.539
$S \uparrow = 0.390 = 0.486 = 0.417 = 0.513 = 0.484 = 0.489 = 0.517$	0.478	0.496
TAD66K $\mathcal{L} \downarrow$ 1.851 1.808 1.734 1.598 1.570 1.627 1.591	1.621	1.457
$\mathcal{M}\downarrow$ 0.812 0.780 0.876 0.682 0.746 0.728 0.782	0.793	0.812
$\mathcal{H} \downarrow$ 1.690 1.370 1.669 1.651 1.402 1.460 1.175	1.354	1.162
$\mathcal{P} \uparrow$ 0.862 0.881 0.886 0.899 0.936 0.918 0.940	0.925	0.943
$\mathcal{S} \uparrow = 0.877 0.865 0.858 0.887 0.902 0.899 0.909$	0.897	0.912
$PARA$ $\mathcal{L} \downarrow$ 0.616 0.573 0.469 0.551 0.383 0.572 0.336	0.402	0.327
$\mathcal{M}\downarrow$ 0.344 0.290 0.328 0.299 0.282 0.315 0.276	0.314	0.251
$\mathcal{H} \downarrow 0.486 0.502 0.503 0.429 0.276 0.424 0.256$	0.379	0.290

	,,	, 4		02		
			Mode	.1		
Dataset	Metric	L&FDS		Base.	Ours	
	$\mathcal{P} \uparrow$	0.752	0.759	0.743	0.777	
	$\mathcal{S} \uparrow$	0.740	0.753	0.735	0.764	
AVA	$\mathcal{L}\downarrow$	0.588	0.542	0.616	0.438	
AVA	$\mathcal{M}\downarrow$	0.303	0.297	0.295	0.302	
	$\mathcal{H}\downarrow$	0.509	0.485	0.513	0.426	
	$\mathcal{P} \uparrow$	0.746	0.750	0.740	0.772	
	$\mathcal{S} \uparrow$	0.735	0.738	0.732	0.760	
AADB	$\mathcal{L}\downarrow$	1.473	1.537	1.526	1.289	
THILD	$\mathcal{M}\downarrow$	0.888	0.881	0.896	0.905	
	$\mathcal{H}\downarrow$	1.407	1.295	1.402	1.141	
	$\mathcal{P} \uparrow$	0.509	0.514	0.507	0.539	
	$\mathcal{S} \uparrow$	0.483	0.487	0.478	0.496	
TAD66K	$\mathcal{L}\downarrow$	1.611	1.560	1.621	1.457	
meoon	$\mathcal{M}\downarrow$	0.787	0.796	0.793	0.812	
	$\mid \mathcal{H} \downarrow$	1.369	1.343	1.354	1.162	
	$P\uparrow$	0.933	0.930	0.925	0.943	
PARA	$\mathcal{S} \uparrow$	0.904	0.906	0.897	0.912	
	$\mathcal{L}\downarrow$	0.371	0.363	0.402	0.327	
	$M \downarrow$	0.301	0.322	0.314	0.251	
	$\mid \mathcal{H} \downarrow$	0.360	0.345	0.379	0.290	
			2)			

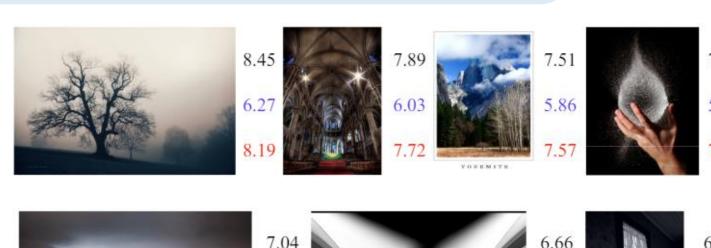

1			0.749	0.740	0.518	0.323	0.47
	1		0.758	0.752	0.592	0.287	0.52
		1	0.760	0.749	0.575	0.286	0.48
✓	1		0.764	0.748	0.484	0.324	0.43
✓		1	0.762	0.756	0.461	0.314	0.44
	1	/	0.771	0.757	0.547	0.286	0.46
✓	1	/	0.777	0.764	0.438	0.302	0.42
			(c)			
	~	•	דין ת	٠ ٨٠	41 77 ·	T A A	
(a) (comp	oarin _a	g ELT	A W1	th /	IAA	
mat1	hode	on fo	our da	togat	a		

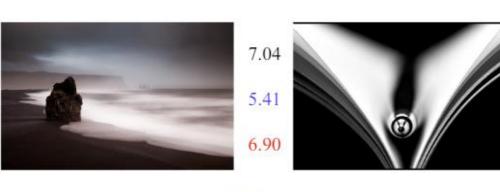
 $\mathcal{S} \uparrow \quad \mathcal{L} \downarrow \quad \mathcal{M} \downarrow \quad \mathcal{H} \downarrow$

0.743 0.735 0.616 0.295 0.513

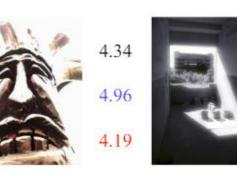
- (b) Comparing ELTA with 2 Deep Imbalanced Regression (DIR) methods on four datasets.
- (c) Ablation of different modules on the AVA dataset.

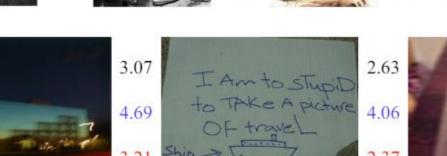
Enhancing other Methods




Right: Cross-architecture evaluations are conducted to enhance other IAA methods, resulting in improved results on AVA.

and can be easily integrated with other methods.


i NIMA I	•	•		0.049	0.051	0.014	0.556	0.028
i	✓	✓	✓	0.658	0.640	0.593	0.340	0.601
				0.687	0.665	0.675	0.321	0.660
HGCN	✓	1		0.700	0.675	0.582	0.343	0.593
	✓	1	✓	0.714	0.693	0.564	0.329	0.575
				0.668	0.651	0.653	0.382	0.568
BIAA	✓	1		0.682	0.675	0.596	0.390	0.514
]	✓	1	✓	0.699	0.687	0.544	0.381	0.497
ĺ				0.738	0.726	0.647	0.305	0.628
MUSIQ	✓	1		0.748	0.734	0.603	0.311	0.562
,	✓	/	✓	0.761	0.745	0.588	0.327	0.482
				0.745	0.708	0.600	0.317	0.531
MaxViT	✓	1		0.750	0.728	0.557	0.340	0.426
	✓	✓	✓	0.759	0.742	0.532	0.333	0.428
				0.765	0.758	0.630	0.237	0.729
TANet	✓	1		0.772	0.767	0.591	0.244	0.633
	✓	1	✓	0.779	0.771	0.562	0.251	0.585
				0.770	0.759	0.490	0.313	0.433
EAT	✓	1		0.777	0.765	0.450	0.310	0.426
	✓	1	1	0.780	0.768	0.450	0.307	0.413


Evaluation Samples

aesthetic quality of images. Typically, its evaluation results cluster within a 4-6.5 point range, which means significant evaluation errors for images with high or low aesthetic values. In contrast, our proposed ELTA model, indicated in red, demonstrates improved performance. The result is closer to ground truth.

The Baseline model, marked

effectively differentiate the

in blue, struggles to