A Call for Embodied Al

- Giuseppe Paolo
- Jonas Gonzalez-Billandon
- Balázs Kégl

Noah's Ark Lab – Huawei

Embodied Al agents

- Non passive observers of their world: they live in it and interact with it
- Sensory-motor coupling with the environment
- Continuously learn and evolve
- Can be controlled in a direct way by setting their goal

Internet Al

- Trained on static, curated datasets
- Completely separated from the environment
- Not designed to understand causal relationships
- Only identify proximate context and correlations
- Do not adapt to the world, need retraining

Embodied Al is the next fundamental step towards Generalist Als

Current Al systems lack a deep, grounded sense of care. Embodiment can provide that.

Embodied Al

Coupled to its environment.

Easily adapts to it. Goal driven.

LLM

Agents

Systems (SMAI)

Almost invisible

LLM

Internet Al

Static, non adaptable. Difficult to align. Needs a lot of data preparation.

Agents

Embodiment

Social Media Content Al Recommendation

Ubiquitous (e.g. Facebook, Amazon, Netflix...)

Continuously adapt to environment: the user

Controlled by changing their goals

Clear objectives: maximize the user engagement

?????

Why Embodiment?

Friston's Active Inference Principle

The brain minimizes the discrepancy between

its perceptions and its predictions of the state

Robotics experiments by Ishiguro & Kawakatsu (2004)

- Theory and practical application in robotics.
- Close and effective integration of control mechanisms with body dynamics
- Enhanced energy efficiency

Two kittens in a carousel:

- one can interact with the carousel
- the other is only a passive observer
- Both receive identical visual input
- The kitten engaged in active interaction exhibits normal visual development.
- The passive kitten does not exhibit normal visual development.

Get the Paper!

of the world

Corresponding Author

Components

Perception

The ability to sense its environment

Memory

The capacity to retain past experiences

Action

The ability to interact with and change its environment

Learning

The ability to integrate experiences to form new knowledge and abilities

Challenges

New Learning Theory

Learning agents have to adapt to a dynamically changing environment.

Noise and Uncertainty

The world is not completely observable and sensors and actuators are noisy.

Simulators

We will need light and accurate simulators to replace static datasets.

Interaction with Humans

Proper interaction reduces fear and helps adoption. LLMs can help with this.

Generalization

Adapting to unseen settings is fundamental for a truly generalist agent.

Hardware Limitation

Current AI systems are computationally heavy and power hungry.

