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Select-Rank in Online Platforms

Ranking algorithms are designed to organize vast quantities of
information to enhance user satisfaction:

▶ Streaming Services: YouTube, Netflix, Disney Plus ...

▶ Online Retailers: Amazon, Walmart, Target ...

▶ Short Videos: TikTok, KuaiShou ...

Remark

Usually, in an industrial context, the ranking process is twofold:

1 the retrieval/select phase;

2 the ranking phase.
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Literature Review

▶ Learning to rank in the bandit literature
1 User Click Models:

[Chuklin et al.(2022)Chuklin, Markov, and De Rijke,
Zhong et al.(2021)Zhong, Chueng, and Tan,
Katariya et al.(2016)Katariya, Kveton, Szepesvari, and Wen]

2 Position-Based Models:
[Lagrée et al.(2016)Lagrée, Vernade, and Cappe,
Komiyama et al.(2017)Komiyama, Honda, and Takeda,
Lattimore et al.(2018)Lattimore, Kveton, Li, and Szepesvari]

▶ Large-scale ranking algorithms with “explore-then-commit”
[Liu et al.(2009), Cao et al.(2007)Cao, Qin, Liu, Tsai, and Li,
Lee and Lin(2014), Li et al.(2007)Li, Wu, and Burges,
Li and Lin(2006), Burges(2010),
Li et al.(2024)Li, Feng, and Chen]
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Problem Setup in Bandit Setting

Consider an online platform that hosts N items, and displays
ordered K items for each customer, for a total of T periods.

At every time period t ∈ [T ],

1 a user arrives with a context Xt ∈ Rd

2 ranking agent chooses the retrieved K items st(Xt):
st(Xt) = (qt(1), · · · , qt(K ))

3 ranking agent decides and displays the ordered K items σt
4 ranking agent sees the user satisfaction r(Xt , σt)

Goals

1 Personalized Retrieval: choose K items from N items

2 Personalized Ranking: optimally rank the retrieved K items
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Challenges and Our Solution Framework

Challenges

1 Estimating user satisfaction in the face of uncertainty

2 Optimally choosing from a total of
(N
K

)
K ! ranking options

Solution Framework

1 Reward estimation via exploration-based bandit algorithm

2 Optimal ranking via solution to matching problem
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User Satisfaction Model as a Generalized Linear Model

At any time t, for each item j ranked in position k , let Yt,j ,k be
the potential outcome of the user satisfaction with this item.

P(Yt,j ,k |Xt ; j , k)

=h(Yt,j ,k , τ) exp
(Yt,j ,k(αjk + βj

TXt)− A(αjk + βj
TXt)

d(τ)

)

▶ h(·), d(·),A(·) are the known specified functions

▶ τ is the known scale parameter

▶ βj ∈ Rd is the unknown embedding of item j

▶ αj ∈ R is the unknown position effect of item j
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User Satisfaction Model as a Generalized Linear Model

At any time t, for each item j ranked in position k , let Yt,j ,k be
the potential outcome of the user satisfaction with this item.

P(Yt,j ,k |Xt ; j , k)

=h(Yt,j ,k , τ) exp
(Yt,j ,k(αjk + βj

TXt)− A(αjk + βj
TXt)

d(τ)
)
)

Remark

For the learning purpose, we are interested in estimating the
item-specific parameters βj and αj :

µj(Xt , k) := E[Yt,j ,k |Xt , j , k] = A′(αjk + βj
TXt).
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User Satisfaction Model as a Neural Network

At any time t, for each item j ranked in position k , let Yt,j ,k be
the potential outcome of the user satisfaction with this item.

P(Yt,j ,k |Xt , j , k) = Sigmoid
(
f (k)(Xt ; θj)

)
▶ f (k) is the logit of reward probability at position k :

f (k)(Xt ; θ) =
√
mWLΣ

(
WL−1Σ

(
. . .Σ(W1Xt)

))
▶ Xt is the context information

▶ θj is the true parameters in the reward function of item j :

θj = [vec(W
(j)
1 ), . . . , vec(W

(j)
L )]
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Additive Reward Structure

Given a ranking σt = (σt(1), . . . , σt(K )), we assume the expected
user satisfaction of the ranked list is additive:

r(Xt , σt) =
K∑

k=1

µqt(k)(Xt , σt(k)).

Example (Watchtime).

Streaming services optimize total user watchtime.

Example (Revenue).

Online retailers maximize total revenue of the displayed items.
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Upper Confidence Ranking (UCR)

To adaptively learn to rank in the bandit setting, we follow the
principle of “optimism in the face of uncertainty”.
Specifically, at any time period t ∈ [T ], the ranking agent

1 estimates the upper confidence bound Ut(Xt , σ) of the
expected user satisfaction r(Xt , σ) for each possible ranking;

2 selects the optimal ranking σt :

σt = argmax
σ

{
Ut(Xt , σ)

}
.
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Constructing Upper Confidence Bounds [Li et al.(2017)Li, Lu, and Zhou]

Maximum Likelihood Estimation (MLE) θ̂t,j := (α̂t,j , β̂t,j)
Action Vector zt,q−1

t (j) := (σt(q
−1
t (j)),Xt)

Covariance Matrix V
(t)
j :=

∑t
τ=1 1{j ∈ s(Xτ )} · zτ,jz⊤τ,j

▶ Upper Confidence Bound of µj(Xt , k), i.e. σt(q
−1
t (j)) = k :

µ̂U
t,j(Xt , k) := A′( θ̂Tt,jzt,k︸ ︷︷ ︸

reward estimation

+ ξ∥zt,k∥(V (t)
j )−1︸ ︷︷ ︸

exploration term

)

▶ Upper Confidence Bound of r(xt , σt):

Ût(Xt , σt) :=
K∑

k=1

µ̂U
t,qt(k)

(Xt , σt(k)).
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Ranking via Maximum Weighted Bipartite Matching
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Maximum Weighted Bipartite Matching

max
mt

∑
j∈[N],k∈[K ]

wU
t (j , k)mt(j , k)

s.t.
∑
j∈[N]

mt(j , k) = 1, ∀k ∈ [K ]

∑
k∈[K ]

mt(j , k) ≤ 1, ∀j ∈ [N]

mt(j , k) ∈ {0, 1}, ∀j ∈ [N],∀k ∈ [K ],

σt(j) = k ⇔ mt(j , k) = 1,

st(Xt) = {j ∈ [N] :
∑
k∈[K ]

mt(j , k) = 1}.
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Adaptively Learning to Rank
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Main Result on Cumulative Regret

Proposition

For any δ ∈ (0, 1). If T0 = max
{
O( (K+N)2

N2 log d
δ ),O(d log T

d )
}
,

then with probability at least 1− δ, for all t ∈ [T0,T ] and all
j ∈ [N], it holds that

∥θ̂t,j − θj∥V (t)
j

= O(
√

d log(T/d) + log(1/δ)).

Theorem

With probability at least 1− δ and proper choice of T0, the regret

RT = Õ

(
(K + N)2 + d + d

√
NKT

)
.

Learning to Rank Jingyuan Wang



Introduction Adaptively Learning to Rank Theoretical Guarantee Empirical Results

Main Result on Cumulative Regret

Proposition

For any δ ∈ (0, 1). If T0 = max
{
O( (K+N)2

N2 log d
δ ),O(d log T

d )
}
,

then with probability at least 1− δ, for all t ∈ [T0,T ] and all
j ∈ [N], it holds that

∥θ̂t,j − θj∥V (t)
j

= O(
√

d log(T/d) + log(1/δ)).

Theorem

With probability at least 1− δ and proper choice of T0, the regret

RT = Õ
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Empirical Study and Benchmark
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Experiment Results with Simulated Dateset

Figure 1: The average cumulative regret (with standard variation interval)
of UCR and G-MLE in the simulated environment, with N = K = 5.
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Experiment Results with Simulated Dateset

Figure 2: The average cumulative regret (with standard variation interval)
of UCR and G-MLE in the simulated environment, with N = 10,K = 5.
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Experiment Results with Real-World Dataset

Figure 3: Average relative regret (with standard variation interval) of
UCR and G-MLE on the real-world dataset, with N = 114,K = 3
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Adaptively Learning to Select-Rank in Online Platforms

Publication:
Jingyuan, Wang, Perry Dong, Ying Jin, Ruohan Zhan, Zhengyuan
Zhou. ”Adaptively Learning to Select-Rank in Online Platforms.”
International conference on machine learning. PMLR, 2024.

Python Codes: https://github.com/arena-tools/ranking-agent
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