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White-box attribution methods produce 
attribution maps with increased power 
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White-box methods are computationally more 
efficient but have lower faithfulness



What are these high-frequencies 
and where do they come from?



High-frequencies are artifacts

ζ(x, σ) = | | f(x + ϵ) − ( f(x) + ϵ∇σ f(x)) | |2

Given a cutoff frequency , we 
characterize the error between the 
Taylor expansion  and the function 
through, , with 

 (no filtering), through: 

σ

ζ(x, σ)/ζ(x, σmax)
σmax = 224

The filtered gradient still approximates the non-filtered gradient 
well when defined as the first-order term of a Taylor expansion.

Considering:

        (1)f(x + ϵ) ≈ f(x) + ϵ∇x f(x)
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And stem from Max Pooling operations
• The gradients following a Max Pooling operation exhibit checkerboard patterns.
• The Fourier signatures of the gradients resulting from a Max Pooling show more 

power in the high frequencies than those resulting from an Average Pooling.



And stem from Max Pooling operations
• The gradients following a Max Pooling operation exhibit checkerboard patterns.
• The Fourier signatures of the gradients resulting from a Max Pooling show more 

power in the high frequencies than those resulting from an Average Pooling.
• This effect is cumulative over the depth of the model, and is not alleviated by training.



Can we repair the white-box methods 
by low-pass filtering these artifacts?
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σ⋆
Saliency
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Conclusion
• A major source of high-frequency 

artifacts in attribution maps computed 
with white-box methods is inherited from 
the model’s gradients. 


• These artifacts are a consequence of the 
max-pooling and striding operations 
used in convolutional neural networks 
(CNNs) and are responsible for the lower 
explainability scores of these methods.


• FORGrad filters out frequencies above a 
certain ideal cut-off value and 
systematically improves the 
explainability score of white-box 
methods while being significantly more 
computationally efficient. 



Thank you!


