

Saliency Strikes Back: How Filtering out High Frequencies Improves White-Box Explanations

**Sabine Muzellec^{1,2}, Thomas Fel^{1,3}, Victor Boutin^{1,2}, Léo Andéol^{3,4},
Rufin VanRullen², Thomas Serre¹**

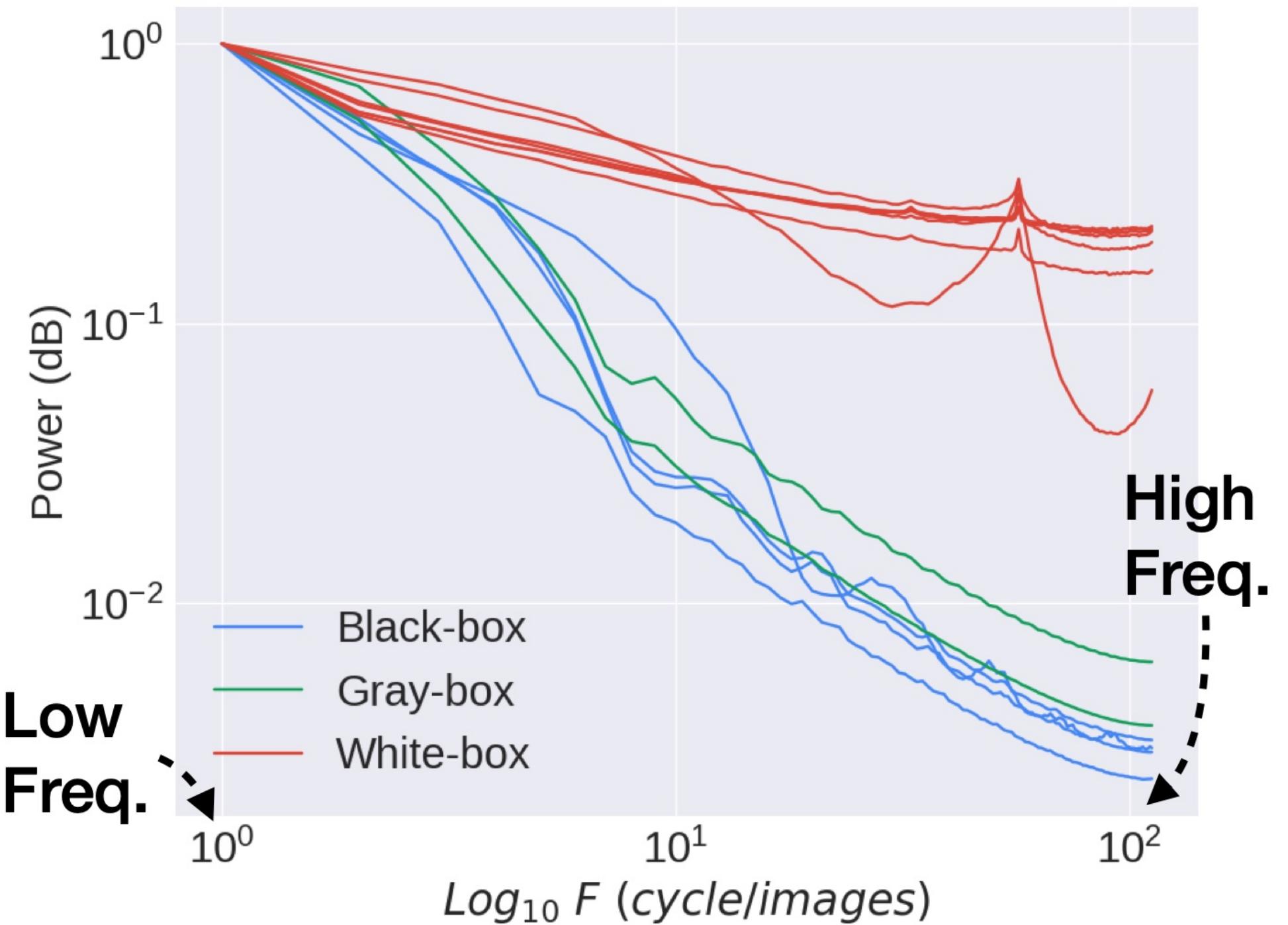
¹Carney Institute for Brain Science, Brown University, USA ²CerCo, CNRS, France

³SNCF, France ⁴Institute of Mathematics of Toulouse, University Paul Sabatier, France

ICML 2024 - July 21st to 27th - Vienna, Austria

Comparing attribution methods

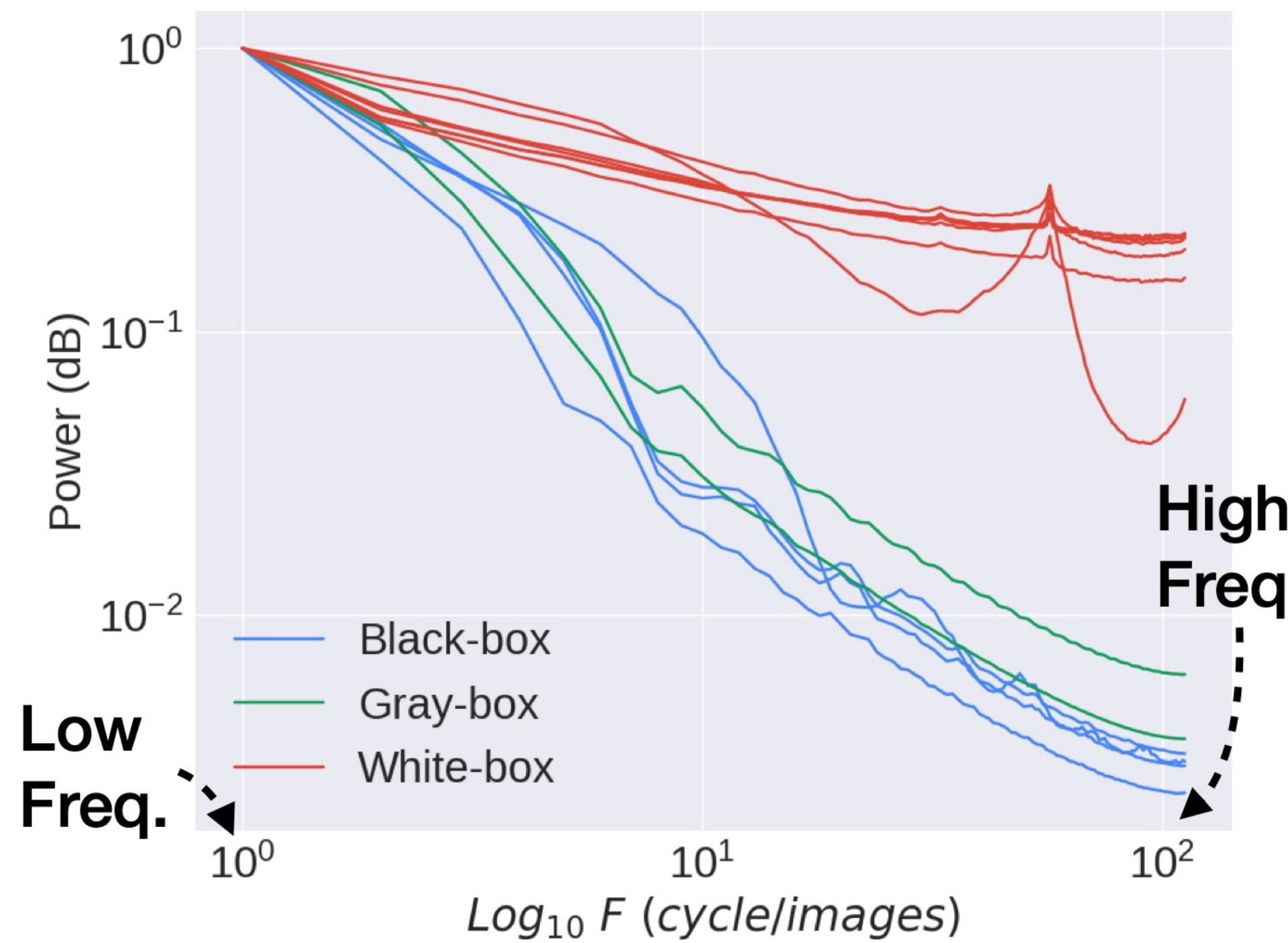
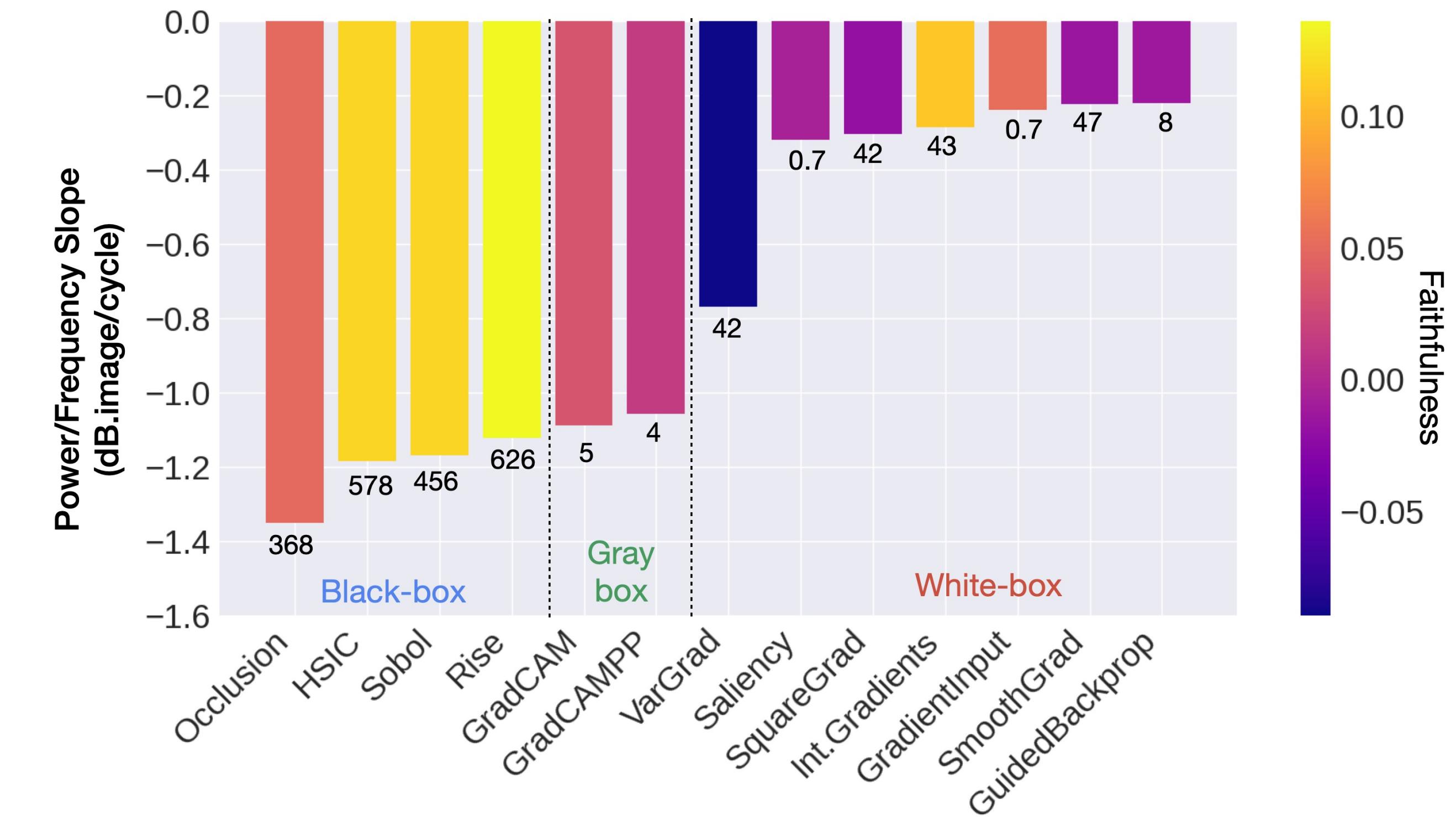
Using their Fourier signature



White-box attribution methods produce attribution maps with increased power in the high frequencies

Comparing attribution methods

Using their Fourier signature



White-box attribution methods produce attribution maps with increased power in the high frequencies

White-box methods are computationally more efficient but have lower faithfulness

What are these high-frequencies
and where do they come from?

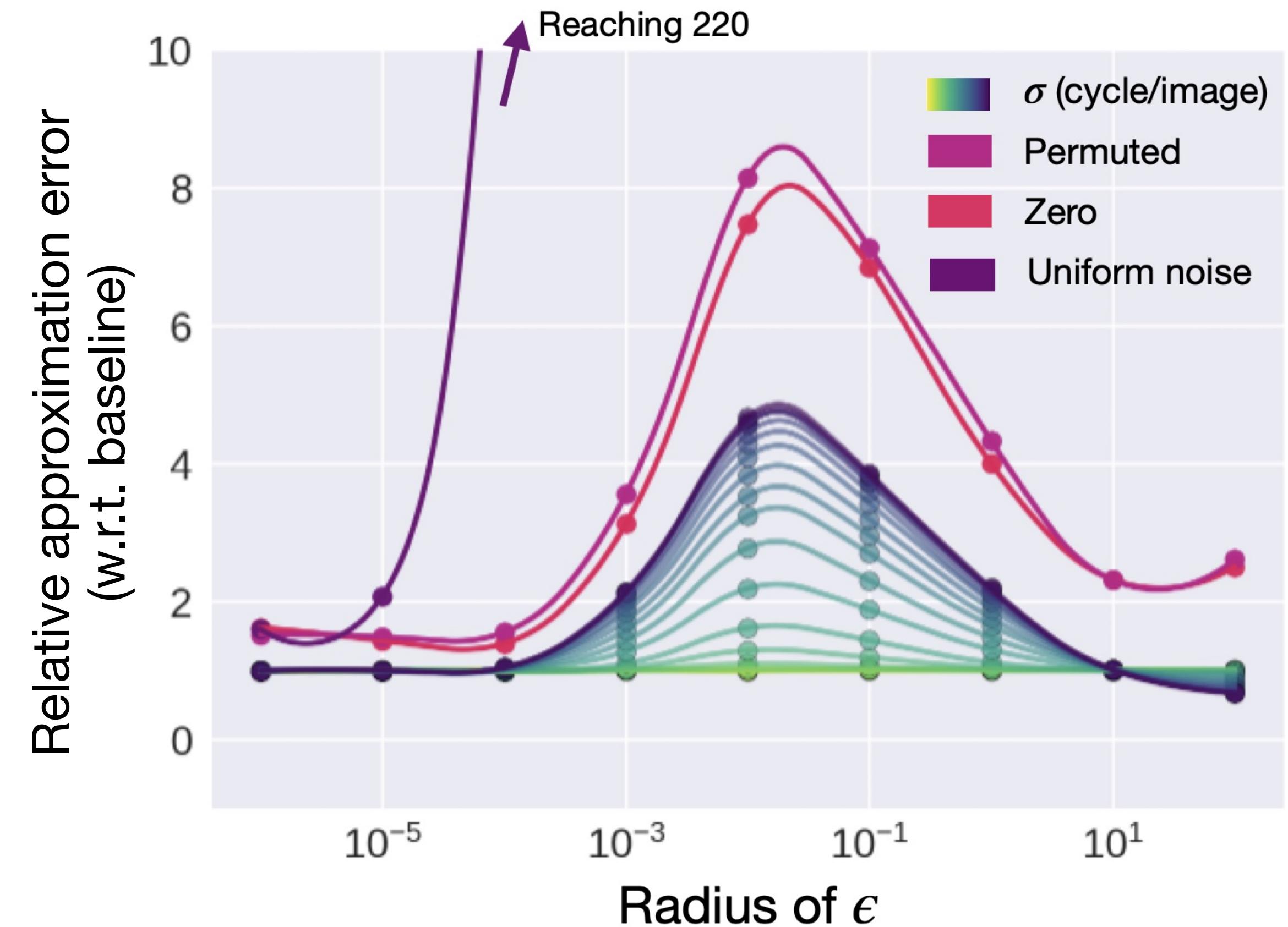
High-frequencies are artifacts

Considering:

$$f(x + \epsilon) \approx f(x) + \epsilon \nabla_x f(x) \quad (1)$$

Given a cutoff frequency σ , we characterize the error between the Taylor expansion and the function through, $\zeta(x, \sigma)/\zeta(x, \sigma_{\max})$, with $\sigma_{\max} = 224$ (no filtering), through:

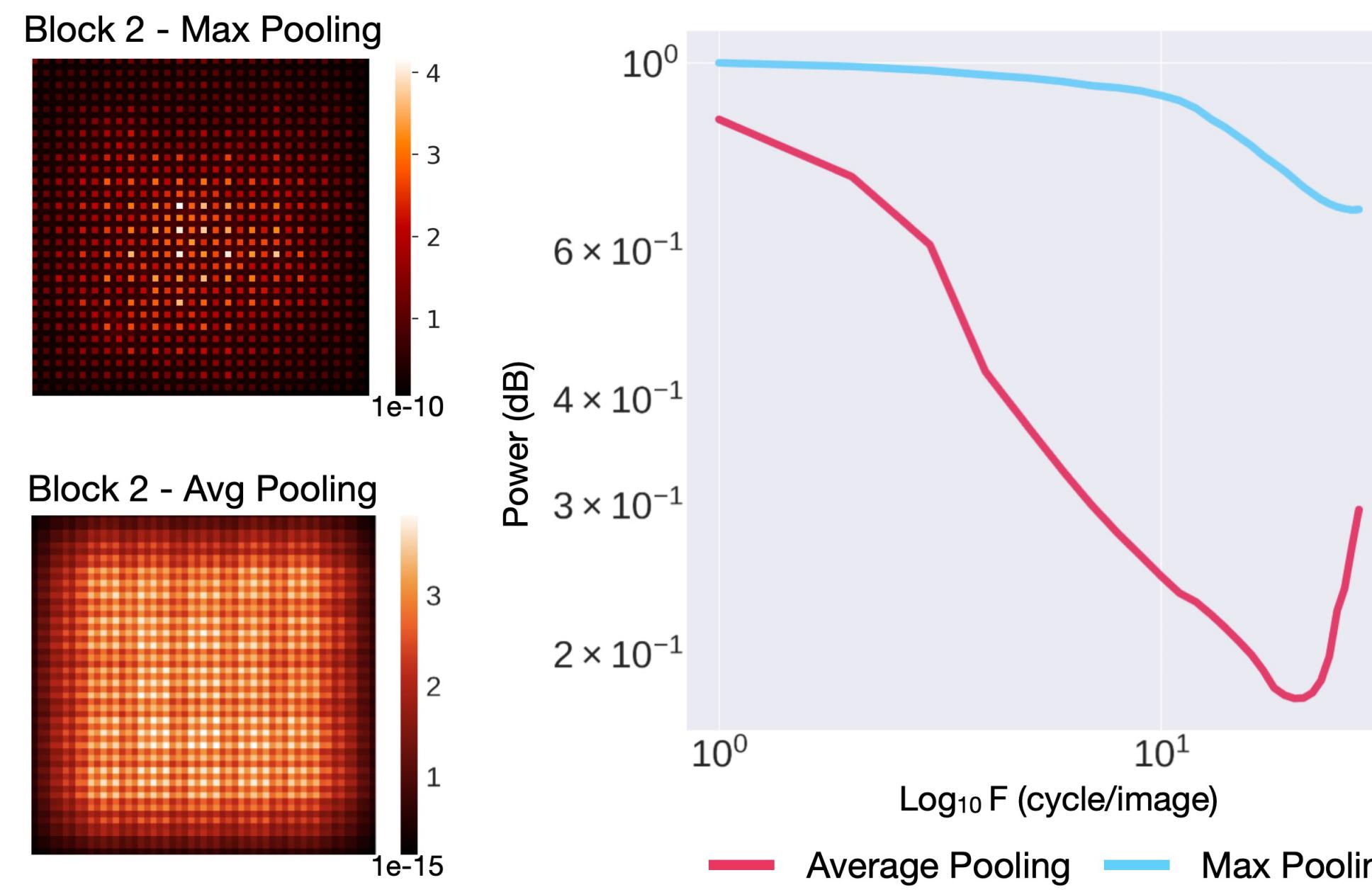
$$\zeta(x, \sigma) = \| \|f(x + \epsilon) - (f(x) + \epsilon \nabla_\sigma f(x))\| \|_2$$



The filtered gradient still approximates the non-filtered gradient well when defined as the first-order term of a Taylor expansion.

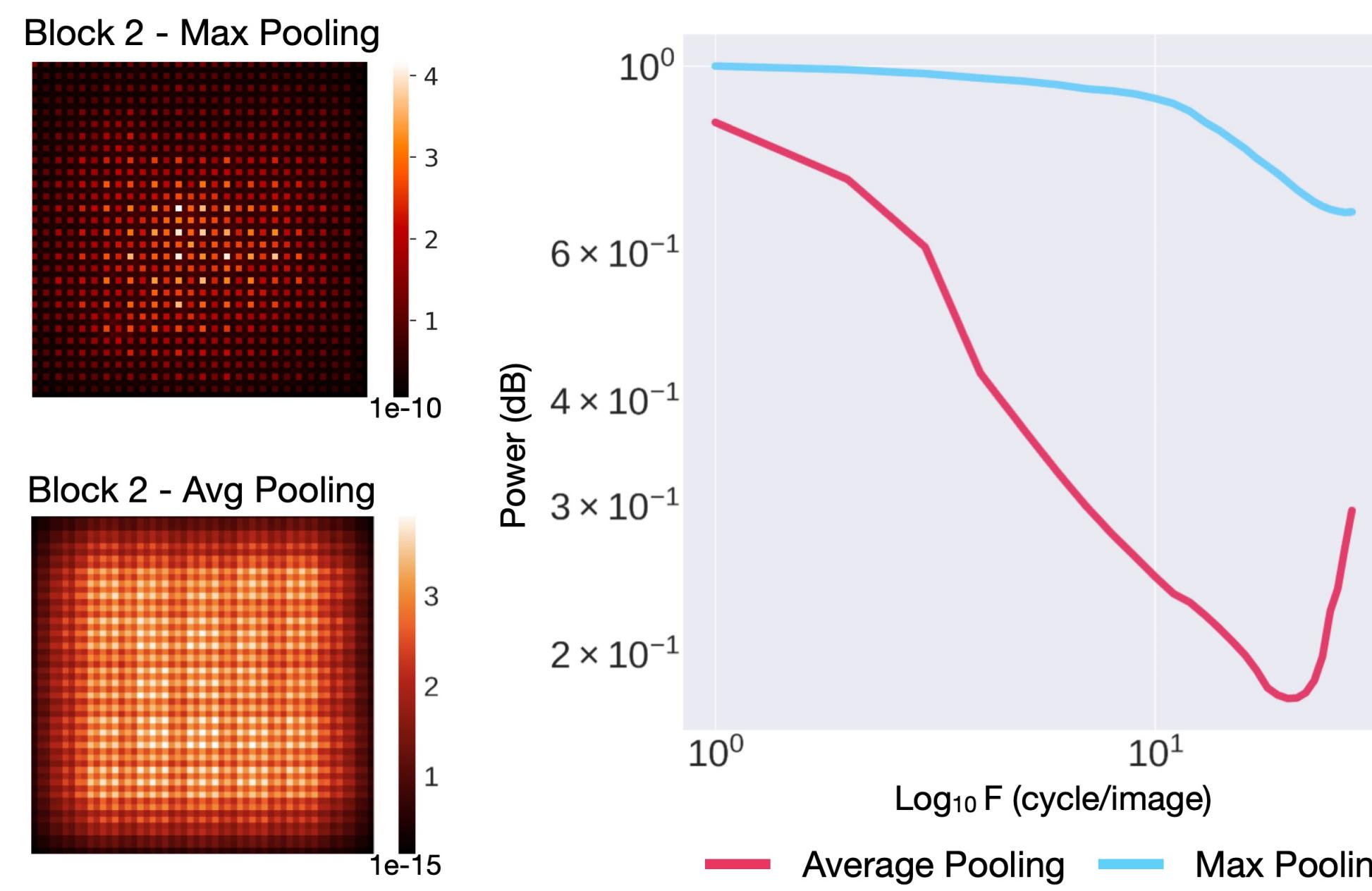
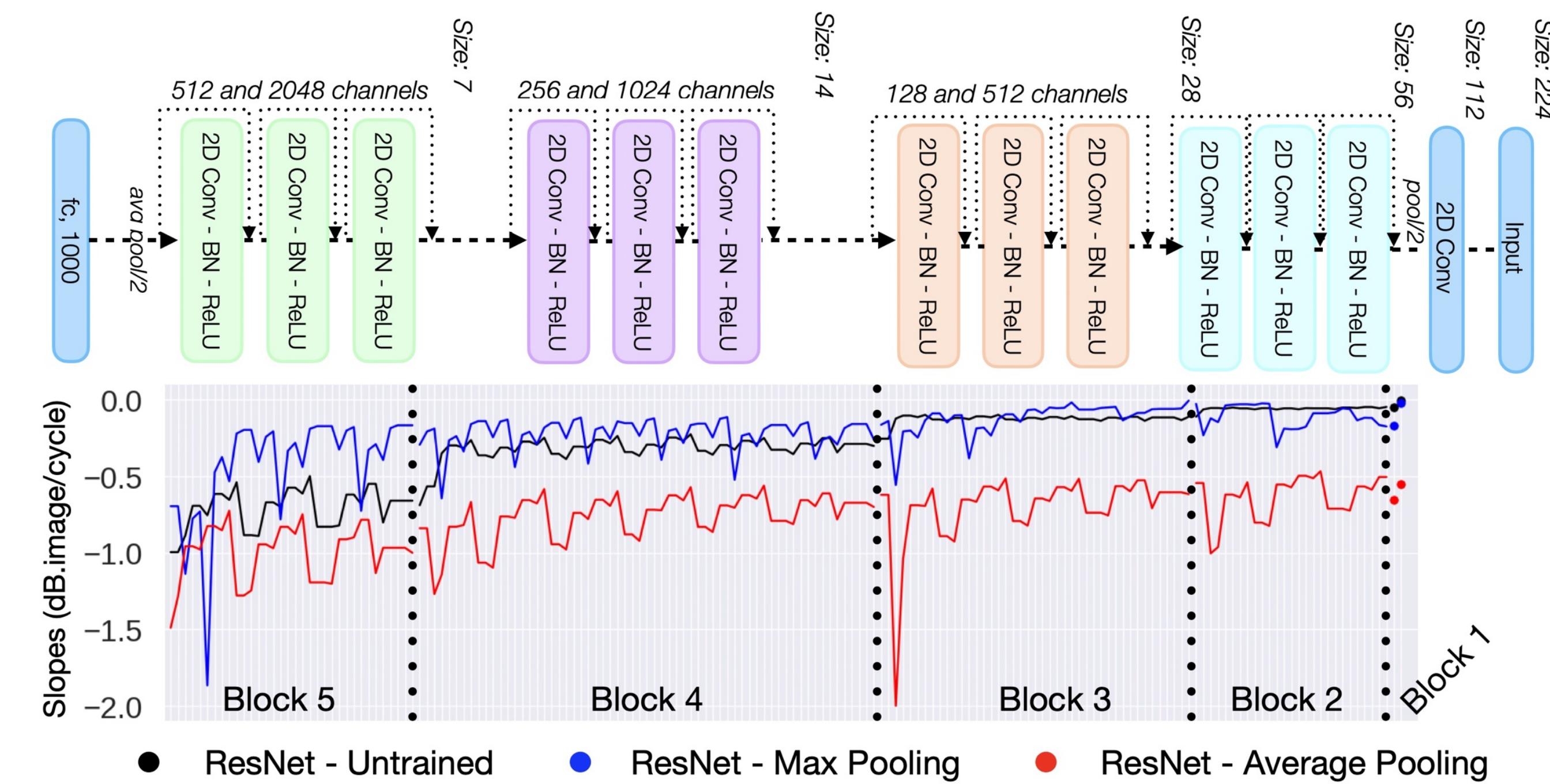
And stem from Max Pooling operations

- The gradients following a Max Pooling operation exhibit checkerboard patterns.
- The Fourier signatures of the gradients resulting from a Max Pooling show more power in the high frequencies than those resulting from an Average Pooling.



And stem from Max Pooling operations

- The gradients following a Max Pooling operation exhibit checkerboard patterns.
- The Fourier signatures of the gradients resulting from a Max Pooling show more power in the high frequencies than those resulting from an Average Pooling.
- This effect is cumulative over the depth of the model, and is not alleviated by training.



Can we repair the white-box methods
by low-pass filtering these artifacts?

FORGrad: Fourier Reparation of the Gradient

FORGrad:

- Selects the cutoff frequency, σ^* , to maximize faithfulness

FORGrad: Fourier Reparation of the Gradient

FORGrad:

- Selects the cutoff frequency, σ^* , maximizing the faithfulness
- Improves the score on all other metrics
- Can be applied to any architecture and attribution method

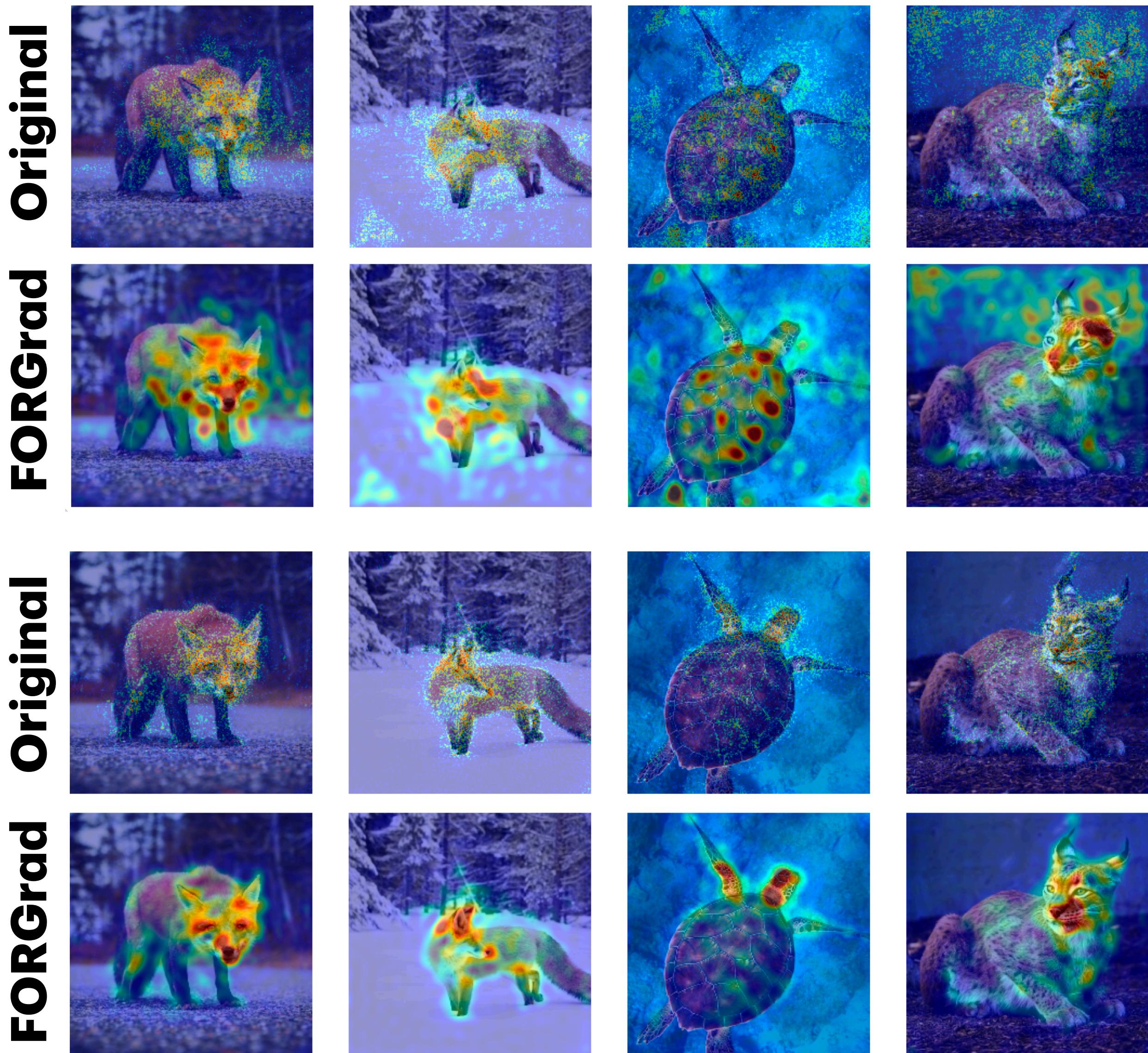
		ResNet50			
		Faith.(\uparrow)	μ Fid.(\uparrow)	Stab.(\downarrow)	Time(\downarrow)
White-box	Saliency(Simonyan et al., 2013)	0.18	0.40	0.67	0.78
	Saliency*	0.28	0.39	0.53	0.89
	Guidedbackprop(Ancona et al., 2018)	0.31	0.45	0.28	8.25
	Guidedbackprop*	0.35	0.45	0.22	7.05
	GradInput(Shrikumar et al., 2017)	0.2	0.36	0.42	0.73
	GradInput*	0.26	0.36	0.35	<u>0.77</u>
	Int.Grad(Sundararajan et al., 2017)	0.24	0.39	0.72	42.7
	Int.Grad*	0.31	0.38	0.76	41.3
	SmoothGrad(Smilkov et al., 2017)	0.23	0.45	0.22	46.6
	SmoothGrad*	<u>0.37</u>	0.44	0.21	48.3
Black & Gray-box	VarGrad (Adebayo et al., 2018)	0.36	<u>0.46</u>	0.003	41.5
	VarGrad*	0.35	0.44	<u>0.004</u>	40.6
	SquareGrad(Seo et al., 2018)	0.36	0.45	0.003	42.1
	SquareGrad*	0.36	<u>0.46</u>	0.005	40.9
	GradCAM(Selvaraju et al., 2017a)	0.31	0.40	0.31	5.24
	GradCAM++(Chattopadhyay et al., 2018)	0.33	0.43	0.34	4.61
	Occlusion(Ancona et al., 2018)	0.20	0.39	0.6	368
	HSIC(Novello et al., 2022)	0.33	0.47	0.45	456
	Sobol(Fel et al., 2021b)	0.34	0.47	0.47	578
	RISE(Petsiuk et al., 2018)	0.41	0.34	0.55	626

FORGrad: Fourier Reparation of the Gradient

FORGrad:

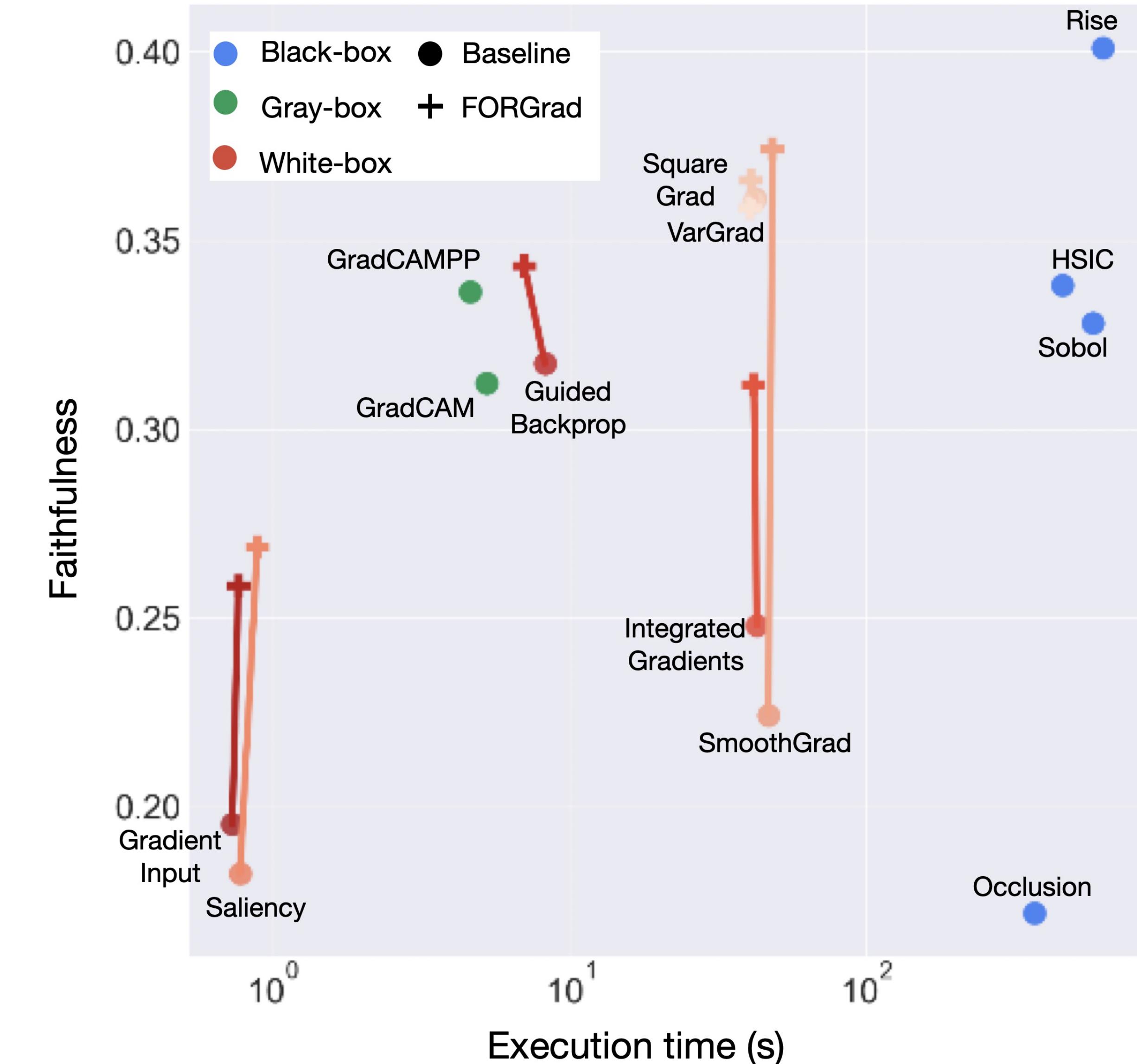
- Selects the cutoff frequency, σ^* , maximizing the faithfulness
- Improves the score on all other metrics
- Can be applied to any architecture and attribution method

Saliency



Conclusion

- A major source of high-frequency artifacts in attribution maps computed with white-box methods is inherited from the model's gradients.
- These artifacts are a consequence of the max-pooling and striding operations used in convolutional neural networks (CNNs) and are responsible for the lower explainability scores of these methods.
- **FORGrad** filters out frequencies above a certain ideal cut-off value and systematically improves the explainability score of white-box methods while being significantly more computationally efficient.



Thank you!