Generalization bounds for heavy-tailed SDEs [\(link to preprint\)](https://arxiv.org/abs/2402.07723)

Benjamin Dupuis - Umut Şimşekli

March 27th, 2024

Why heavy-tailed algorithms?

Motivation:

- **1** Why heavy-tailed algorithms?
- **2** Why are they interesting?

イロト イ押 トイヨ トイヨト

∍

つへへ

A few generic notation

On a data space $\mathcal{Z} = \mathcal{X} \times \mathcal{Y}$ endowed with a probability distribution μ_z , we want to minimize the **population risk**

$$
\min_{w \in \mathbb{R}^d} \Big\{ L(w) := \mathop{\mathbb{E}}_{z \sim \mu_z} [\ell(w, z)] := \mathop{\mathbb{E}}_{(x, y) \sim \mu_z} [\mathcal{L}(h_w(x), y)] \Big\},
$$

Empirical risk over a dataset $S = (z_1, \ldots, z_n) \sim \mu_z^{\otimes n}$

$$
\widehat{L}_S(w) := \frac{1}{n} \sum_{i=1}^n \ell(w, z_i).
$$

Generalization error:

$$
G_S(w) := L(w) - \widehat{L}_S(w). \tag{1}
$$

イロト イ押 トイヨ トイヨト

 Ω

1: Heavy tails as a modelisation of SGD

SGD:

$$
w_{k+1} = w_k - \frac{\eta}{b} \sum_{i \in B_k} \nabla \ell(w_k, z_i)
$$

• What does the gradient noise look like [\[8\]](#page-19-1)?

Other authors injected heavy-tailed noise in the algorithm to improve the generalization performance.

(□) () →

 QQ

2: Generalization error of heavy-tailed algorithms

Experimental works: complex dependence between α and the accuracy gap [\[1\]](#page-19-2).

 299

The simplified model we study

Simplified model

Continuous-time model:

$$
dW_t=-\nabla \widehat{V}_S(W_t)dt+\sigma dL_t^{\alpha}.
$$

Discrete version:

$$
\widehat{W}_{k+1}^S = \widehat{W}_k^S - \eta \nabla \widehat{V}_S(\widehat{W}_k^S) + \eta^{\frac{1}{\alpha}} \sigma L_1^{\alpha}.
$$

 L_t^{α} is a Lévy process, for $\alpha \in (0, 2]$:

- α = 2 corresponds to Brownian motion (Gaussian noise).
- the smaller α the higher the tail of the noise.
- We also added regularization, for technical reasons:

$$
\widehat{V}_S(w) = \widehat{L}_S(w) + \frac{\lambda}{2} ||w||^2.
$$
 (2)

(ロ) (何) (ヨ) (ヨ)

Previous works

For a fixed time horizon $T > 0$, the goal is to get a bound on:

$$
G_S(W_T) := L(W_T) - \widehat{L}_S(W_T), \qquad (3)
$$

イロト イ押 トイヨ トイヨト

 Ω

where $(W_t)_{t>0}$ is solution of the previous equation.

Previous works

For a fixed time horizon $T > 0$, the goal is to get a bound on:

$$
G_S(W_T) := L(W_T) - \widehat{L}_S(W_T), \qquad (3)
$$

where $(W_t)_{t>0}$ is solution of the previous equation.

Previous approaches:

- **Fractal-based approaches** [\[9\]](#page-19-3)
	- \blacktriangleright great in some settings but...
	- \blacktriangleright does not predict the observed tail-index behavior
- **Stability-based approaches** [\[7,](#page-19-4) [6\]](#page-19-5):
	- ▶ Only expected bound
	- \blacktriangleright Huge dependence on the dimension d
	- ▶ Can predict the non-monotonic behavior wrt *α*

Our work: New theoretical approach

We combine new PAC-Bayesian techniques with the study of the associated **'fractional' Fokker-Planck equation**, as done for Langevin dynamics [\[5,](#page-19-6) [2,](#page-19-7) [4\]](#page-19-8).

$$
dW_t = -\nabla \widehat{V}_S(W_t)dt + \sigma dL_t^{\alpha} \implies \frac{\partial}{\partial_t} u_t = -\sigma_1^{\alpha}(-\Delta)^{\frac{\alpha}{2}} u_t + \text{div}(u_t \nabla \widehat{V}_S),
$$

with u_t the probability density of W_t .

←ロト ←何ト ←ヨト ←ヨト

 Ω

Our work: New theoretical approach

We combine new PAC-Bayesian techniques with the study of the associated **'fractional' Fokker-Planck equation**, as done for Langevin dynamics [\[5,](#page-19-6) [2,](#page-19-7) [4\]](#page-19-8).

$$
dW_t = -\nabla \widehat{V}_S(W_t)dt + \sigma dL_t^{\alpha} \implies \frac{\partial}{\partial_t} u_t = -\sigma_1^{\alpha}(-\Delta)^{\frac{\alpha}{2}} u_t + \text{div}(u_t \nabla \widehat{V}_S),
$$

with u_t the probability density of W_t .

Main result (informal, partial) With probability at least 1 − *ζ*:

$$
\mathbb{E}_{W_T \sim u_T} \left[G_S(W_T) \right] \leq 2s \sqrt{\frac{K_{\alpha,d}}{n \sigma^{\alpha}}} \int_0^T \mathbb{E}_U \left\| \nabla \widehat{L}_S(W_t^S) \right\|^2 dt + \frac{\log(3/\zeta) + \Lambda}{n}, \quad (4)
$$

with:

$$
K_{\alpha,d} = \frac{(2-\alpha)\Gamma\left(1-\frac{\alpha}{2}\right)d\Gamma\left(\frac{d}{2}\right)}{\alpha 2^{\alpha}\Gamma\left(\frac{d+\alpha}{2}\right)R^{2-\alpha}},
$$

 $(1 + 4\sqrt{3}) + 4\sqrt{3} + 4\sqrt{3}$

Proof idea?

- Inspired from existing works in the case of Gaussian noise
- Computation of an **entropy flow**, inspired by [\[3\]](#page-19-9):

- Most of the complexity is contained in the term $(-\Delta)^{\frac{\alpha}{2}}$ u, called the fractional Laplacian.
- The main technical idea is to bound the so-called Bregman integral term.

Proof idea? (2)

- **o** It allows to use **PAC-Bayesian theory**
- If the loss is s-subgaussian, we prove that:

$$
\mathbb{E}_{W_{\mathcal{T}}\sim u_{\mathcal{T}}}\left[G_{S}(W_{\mathcal{T}})\right]\leq 2s\sqrt{\frac{\mathrm{KL}(u_{t},\bar{u}_{\infty})+\log(3/\zeta)}{n}}.
$$

. (5)

∢ ロ ▶ - ィ 印 ▶ - ィ

Ε \triangleright \rightarrow \exists \rightarrow ∍

つへへ

Proof idea? (2)

- **o** It allows to use **PAC-Bayesian theory**
- \bullet If the loss is s-subgaussian, we prove that:

$$
\mathbb{E}_{W_T \sim u_T} \left[G_S(W_T) \right] \leq 2s \sqrt{\frac{\mathrm{KL}(u_t, \bar{u}_{\infty}) + \log(3/\zeta)}{n}}.
$$
 (5)

Main result (informal, partial) With probability at least 1 − *ζ*:

$$
\mathbb{E}_{W_T \sim u_T} \left[G_S(W_T) \right] \leq 2s \sqrt{\frac{K_{\alpha,d}}{n \sigma^{\alpha}}} \int_0^T \mathbb{E}_{U} \left\| \nabla \widehat{L}_S(W_t^S) \right\|^2 dt + \frac{\log(3/\zeta) + \Lambda}{n}, \quad (6)
$$

with:

$$
K_{\alpha,d} = \frac{(2-\alpha)\Gamma\left(1-\frac{\alpha}{2}\right)d\Gamma\left(\frac{d}{2}\right)}{\alpha 2^{\alpha}\Gamma\left(\frac{d+\alpha}{2}\right)R^{2-\alpha}},
$$

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Quantitative analysis

- Gaussian limit: $\mathcal{K}_{\alpha,d} \longrightarrow_{\alpha \to 2^{-}} \frac{1}{2}$.
- High-dimensional limit:

$$
K_{\alpha,d} \underset{d \to \infty}{\sim} \frac{(2-\alpha)\Gamma(1-\frac{\alpha}{2})}{R^{2-\alpha}\alpha 2^{\alpha/2}} d^{1-\frac{\alpha}{2}}
$$

 (7)

 299

活

K ロト K 御 ト K 君 ト K 君 K

Quantitative analysis

- Gaussian limit: $\mathcal{K}_{\alpha,d} \longrightarrow_{\alpha \to 2^{-}} \frac{1}{2}$.
- High-dimensional limit:

$$
K_{\alpha,d} \underset{d \to \infty}{\sim} \frac{(2-\alpha)\Gamma(1-\frac{\alpha}{2})}{R^{2-\alpha}\alpha 2^{\alpha/2}} d^{1-\frac{\alpha}{2}}
$$
(7)

Phase transition

In the limit $d \rightarrow \infty$, the constant term is:

$$
\frac{K_{\alpha,d}}{n\sigma_1^{\alpha}} \approx \frac{P_{\alpha}d_0}{n(\sigma\sqrt{d_0})^{\alpha}},
$$
\n(8)

where $d_0:=d/(R^2)$ is a "reduced dimension".

We identify two regimes whether $\sigma \sqrt{d_0} > 1$ or $\sigma \sqrt{d_0} > 1.$

 $($ ロ) $($ $($ $)$ $)$ $($ $)$

Experimental results

Figure: (up) Correlation (Kendall's *τ*) between *α* and the accuracy gap. FCN2 trained on MNIST. Green curve: average *τ* over 10 random seeds. Black curve is the correlation between α and the average accuracy gap over 10 seeds. $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ 290

Benjamin Dupuis - Umut Şimşekli Generalization bounds for heavy-tailed SDEs $\binom{\text{link}}{\text{link}}$ March 27th, 2024 11/15

Experimental results 2

Figure: Estimated bound versus accuracy gap for a FCN2 on MNIST, for different values of R: 1 (top left), 3 (top right), 7 (bottom left), 15 (bot[tom](#page-15-0) [ri](#page-17-0)[g](#page-15-0)[ht\)](#page-16-0)[.](#page-17-0) Ω

Benjamin Dupuis - Umut Şimşekli Generalization bounds for heavy-tailed SDEs $\binom{\text{link}}{\text{link}}$ March 27th, 2024 12/15

. (9)

Experimental results 3

We perform the linear regression:

$$
\log(\widehat{G}) \simeq \widehat{r} \log(d) + C, \tag{10}
$$

 $($ ロ) $($ $($ $)$ $)$ $($ $)$

 Ω

and "estimate" α according to our model $\hat{\alpha} := 2 - 4\hat{r}$.

Figure: Regression of the tail-index *α* from the accuracy error, for a FCN2 trained on MNIST.

Conclusion

K ロ ト K 何 ト K

Ξ \sim \sim \Rightarrow э 299

- [1] M. Barsbey, M. Sefidgaran, M. A. Erdogdu, G. Richard, and U. Şimşekli. Heavy Tails in SGD and Compressibility of Overparametrized Neural Networks. In 35th Conference on Neural Information Processing Systems (NeurIPS 2021). arXiv, June 2021.
- [2] F. Futami and M. Fujisawa. Time-Independent Information-Theoretic Generalization Bounds for SGLD. In 7th Conference on Neural Information Processing Systems (NeurIPS 2023). arXiv, Nov. 2023.
- [3] I. Gentil and C. Imbert. Logarithmic Sobolev inequalities: Regularizing effect of Lévy operators and asymptotic convergence in the Lévy-Fokker-Planck equation. Asymptotic analysis, Sept. 2008.
- [4] J. Li, X. Luo, and M. Qiao. On Generalization Error Bounds of Noisy Gradient Methods for Non-Convex Learning. In Published as a Conference Paper at ICLR 2020. arXiv, Feb. 2020.
- [5] W. Mou, L. Wang, X. Zhai, and K. Zheng. Generalization Bounds of SGLD for Non-convex Learning: Two Theoretical Viewpoints. In Proceedings of the 31st Conference On Learning Theory. arXiv, July 2017.
- [6] A. Raj, M. Barsbey, M. Gürbüzbalaban, L. Zhu, and U. Simsekli. Algorithmic Stability of Heavy-Tailed Stochastic Gradient Descent on Least Squares. In Proceedings of The 34th International Conference on Algorithmic Learning Theory,. arXiv, Feb. 2023.
- [7] A. Raj, L. Zhu, M. Gürbüzbalaban, and U. Şimşekli. Algorithmic Stability of Heavy-Tailed SGD with General Loss Functions. [In](#page-18-0) I[nt](#page-19-0)[er](#page-18-0)[nati](#page-19-0)[on](#page-0-0)[al](#page-19-0) [Co](#page-0-0)[nf](#page-19-0)[ere](#page-0-0)[nce](#page-19-0) Benjamin Dupuis - Umut Simsekli Generalization bounds for heavy-tailed SDEs (link March 27th, 2024 15/15