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Why heavy-tailed algorithms?

Motivation:
1 Why heavy-tailed algorithms?
2 Why are they interesting?
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A few generic notation

On a data space Z = X × Y endowed with a probability distribution µz , we want
to minimize the population risk

min
w∈Rd

{
L(w) := E

z∼µz
[`(w , z)] := E

(x ,y)∼µz
[L(hw (x), y)]

}
,

Empirical risk over a dataset S = (z1, . . . , zn) ∼ µ⊗n
z

L̂S(w) := 1
n

n∑
i=1

`(w , zi).

Generalization error:

GS(w) := L(w)− L̂S(w). (1)
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1: Heavy tails as a modelisation of SGD
SGD:

wk+1 = wk −
η

b
∑
i∈Bk

∇`(wk , zi)

What does the gradient noise look like [8]?

Other authors injected heavy-tailed noise in the algorithm to improve the
generalization performance.
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2: Generalization error of heavy-tailed algorithms
Experimental works: complex dependence between α and the accuracy gap
[1].
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The simplified model we study

Simplified model
Continuous-time model:

dWt = −∇V̂S(Wt)dt + σdLαt .

Discrete version:

Ŵ S
k+1 = Ŵ S

k − η∇V̂S(Ŵ S
k ) + η

1
ασLα1 .

Lαt is a Lévy process, for α ∈ (0, 2]:
α = 2 corresponds to Brownian motion (Gaussian noise).
the smaller α the higher the tail of the noise.
We also added regularization, for technical reasons:

V̂S(w) = L̂S(w) + λ

2 ‖w‖
2
. (2)
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Previous works

For a fixed time horizon T > 0, the goal is to get a bound on:

GS(WT ) := L(WT )− L̂S(WT ), (3)

where (Wt)t≥0 is solution of the previous equation.

Previous approaches:
Fractal-based approaches [9]

I great in some settings but...
I does not predict the observed tail-index behavior

Stability-based approaches [7, 6]:
I Only expected bound
I Huge dependence on the dimension d
I Can predict the non-monotonic behavior wrt α
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Our work: New theoretical approach
We combine new PAC-Bayesian techniques with the study of the associated
‘fractional’ Fokker-Planck equation, as done for Langevin dynamics [5, 2, 4].

dWt = −∇V̂S(Wt)dt + σdLαt =⇒ ∂

∂t
ut = −σα1 (−∆)

α
2 ut + div(ut∇V̂S),

with ut the probability density of Wt .

Main result (informal, partial)
With probability at least 1− ζ:

EWT∼uT [GS(WT )] ≤ 2s

√
Kα,d
nσα

∫ T

0
EU

∥∥∥∇L̂S(W S
t )
∥∥∥2

dt + log(3/ζ) + Λ
n , (4)

with:
Kα,d =

(2− α)Γ
(
1− α

2
)

dΓ
( d

2
)

α2αΓ
( d+α

2
)

R2−α ,
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Proof idea?

Inspired from existing works in the case of Gaussian noise
Computation of an entropy flow, inspired by [3]:

Most of the complexity is contained in the term (−∆)
α
2 u, called the

fractional Laplacian.
The main technical idea is to bound the so-called Bregman integral term.
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Proof idea? (2)

It allows to use PAC-Bayesian theory
If the loss is s-subgaussian, we prove that:

EWT∼uT [GS(WT )] ≤ 2s
√

KL(ut , ū∞) + log(3/ζ)
n . (5)

Main result (informal, partial)
With probability at least 1− ζ:

EWT∼uT [GS(WT )] ≤ 2s

√
Kα,d
nσα

∫ T

0
EU

∥∥∥∇L̂S(W S
t )
∥∥∥2

dt + log(3/ζ) + Λ
n , (6)

with:
Kα,d =

(2− α)Γ
(
1− α

2
)

dΓ
( d

2
)

α2αΓ
( d+α

2
)

R2−α ,
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Quantitative analysis

Gaussian limit:K�; d �!
� ! 2�

1
2 .

High-dimensional limit:

K�; d �
d!1

(2 � � )�
�
1 � �

2

�

R2� � � 2�= 2
d1� �

2 (7)

Phase transition
In the limit d ! 1 , the constant term is:

K�; d

n� �
1

�
P� d0

n(�
p

d0) �
; (8)

whered0 := d=(R2) is a \reduced dimension".

We identify two regimes whether �
p

d0 > 1 or �
p

d0 > 1.
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Experimental results

Figure: (up) Correlation (Kendall's � ) between� and the accuracy gap. FCN2 trained on
MNIST. Green curve: average� over 10 random seeds. Black curve is the correlation
between� and the average accuracy gap over 10 seeds.
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Experimental results 2

bG :=

vu
u
t P� d1� �

2 
n� 1R2� �

NX

k=1



 r bFS(cW S

k )




2
: (9)

Figure: Estimated bound versus accuracy gap for a FCN2 on MNIST, for di�erent values
of R: 1 (top left) , 3 (top right) , 7 (bottom left) , 15 (bottom right) .
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