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Why heavy-tailed algorithms?

Motivation:
1 Why heavy-tailed algorithms?
2 Why are they interesting?
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A few generic notation

On a data space Z = X × Y endowed with a probability distribution µz , we want
to minimize the population risk

min
w∈Rd

{
L(w) := E

z∼µz
[ℓ(w , z)] := E

(x ,y)∼µz
[L(hw (x), y)]

}
,

Empirical risk over a dataset S = (z1, . . . , zn) ∼ µ⊗n
z

L̂S(w) := 1
n

n∑
i=1

ℓ(w , zi).

Generalization error:

GS(w) := L(w) − L̂S(w). (1)
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1: Heavy tails as a modelisation of SGD
SGD:

wk+1 = wk − η

b
∑
i∈Bk

∇ℓ(wk , zi)

What does the gradient noise look like [8]?

Other authors injected heavy-tailed noise in the algorithm to improve the
generalization performance.
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2: Generalization error of heavy-tailed algorithms
Experimental works: complex dependence between α and the accuracy gap
[1].
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The simplified model we study

Simplified model
Continuous-time model:

dWt = −∇V̂S(Wt)dt + σdLα
t .

Discrete version:

Ŵ S
k+1 = Ŵ S

k − η∇V̂S(Ŵ S
k ) + η

1
α σLα

1 .

Lα
t is a Lévy process, for α ∈ (0, 2]:

α = 2 corresponds to Brownian motion (Gaussian noise).
the smaller α the higher the tail of the noise.
We also added regularization, for technical reasons:

V̂S(w) = L̂S(w) + λ

2 ∥w∥2
. (2)
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Previous works

For a fixed time horizon T > 0, the goal is to get a bound on:

GS(WT ) := L(WT ) − L̂S(WT ), (3)

where (Wt)t≥0 is solution of the previous equation.

Previous approaches:
Fractal-based approaches [9]

▶ great in some settings but...
▶ does not predict the observed tail-index behavior

Stability-based approaches [7, 6]:
▶ Only expected bound
▶ Huge dependence on the dimension d
▶ Can predict the non-monotonic behavior wrt α
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Our work: New theoretical approach
We combine new PAC-Bayesian techniques with the study of the associated
‘fractional’ Fokker-Planck equation, as done for Langevin dynamics [5, 2, 4].

dWt = −∇V̂S(Wt)dt + σdLα
t =⇒ ∂

∂t
ut = −σα

1 (−∆)
α
2 ut + div(ut∇V̂S),

with ut the probability density of Wt .

Main result (informal, partial)
With probability at least 1 − ζ:

EWT ∼uT [GS(WT )] ≤ 2s

√
Kα,d
nσα

∫ T

0
EU

∥∥∥∇L̂S(W S
t )

∥∥∥2
dt + log(3/ζ) + Λ

n , (4)

with:
Kα,d =

(2 − α)Γ
(
1 − α

2
)

dΓ
( d

2
)

α2αΓ
( d+α

2
)

R2−α
,
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Proof idea?

Inspired from existing works in the case of Gaussian noise
Computation of an entropy flow, inspired by [3]:

Most of the complexity is contained in the term (−∆)
α
2 u, called the

fractional Laplacian.
The main technical idea is to bound the so-called Bregman integral term.

Benjamin Dupuis - Umut Şimşekli Generalization bounds for heavy-tailed SDEs (link to preprint)March 27th, 2024 8 / 15

https://arxiv.org/abs/2402.07723


Proof idea? (2)

It allows to use PAC-Bayesian theory
If the loss is s-subgaussian, we prove that:

EWT ∼uT [GS(WT )] ≤ 2s
√

KL(ut , ū∞) + log(3/ζ)
n . (5)

Main result (informal, partial)
With probability at least 1 − ζ:

EWT ∼uT [GS(WT )] ≤ 2s

√
Kα,d
nσα

∫ T

0
EU

∥∥∥∇L̂S(W S
t )

∥∥∥2
dt + log(3/ζ) + Λ

n , (6)

with:
Kα,d =

(2 − α)Γ
(
1 − α

2
)

dΓ
( d

2
)

α2αΓ
( d+α

2
)

R2−α
,
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Quantitative analysis

Gaussian limit: Kα,d −→
α→2−

1
2 .

High-dimensional limit:

Kα,d ∼
d→∞

(2 − α)Γ
(
1 − α

2
)

R2−αα2α/2 d1− α
2 (7)

Phase transition
In the limit d → ∞, the constant term is:

Kα,d
nσα

1
≈ Pαd0

n(σ
√

d0)α
, (8)

where d0 := d/(R2) is a “reduced dimension”.

We identify two regimes whether σ
√

d0 > 1 or σ
√

d0 > 1.
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Experimental results

Figure: (up) Correlation (Kendall’s τ) between α and the accuracy gap. FCN2 trained on
MNIST. Green curve: average τ over 10 random seeds. Black curve is the correlation
between α and the average accuracy gap over 10 seeds.
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Experimental results 2

Ĝ :=

√√√√Pαd1− α
2 γ

nσ1R2−α

N∑
k=1

∥∥∥∇F̂S(Ŵ S
k )

∥∥∥2
. (9)

Figure: Estimated bound versus accuracy gap for a FCN2 on MNIST, for different values
of R: 1 (top left), 3 (top right), 7 (bottom left), 15 (bottom right).

Benjamin Dupuis - Umut Şimşekli Generalization bounds for heavy-tailed SDEs (link to preprint)March 27th, 2024 12 / 15

https://arxiv.org/abs/2402.07723


Experimental results 3
We perform the linear regression:

log(Ĝ) ≃ r̂ log(d) + C , (10)

and “estimate” α according to our model α̂ := 2 − 4r̂ .

Figure: Regression of the tail-index α from the accuracy error, for a FCN2 trained on
MNIST.
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Conclusion
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equation. Asymptotic analysis, Sept. 2008.

[4] J. Li, X. Luo, and M. Qiao. On Generalization Error Bounds of Noisy Gradient
Methods for Non-Convex Learning. In Published as a Conference Paper at
ICLR 2020. arXiv, Feb. 2020.

[5] W. Mou, L. Wang, X. Zhai, and K. Zheng. Generalization Bounds of SGLD
for Non-convex Learning: Two Theoretical Viewpoints. In Proceedings of the
31st Conference On Learning Theory. arXiv, July 2017.
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