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Why heavy-tailed algorithms?

Motivation:
@ Why heavy-tailed algorithms?
@ Why are they interesting?
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A few generic notation

On a data space Z = X x ) endowed with a probability distribution u,, we want

to minimize the population risk

min {L(W) =E [lw,z)]:= E [‘C(hw(x)a)/)]}v

weRd Z~ [z (xsy)~ iz

Empirical risk over a dataset S = (z1,...,2,) ~ pu&"

Zs(W) = %Zﬁ(w,z,-).
i=1

Generalization error:
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1: Heavy tails as a modelisation of SGD
e SGD:

Wit1 = Wi — % > V(i z)

i€By
@ What does the gradient noise look like [8]7
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(c) a-stable
@ Other authors injected heavy-tailed noise in the algorithm to improve the
generalization performance.
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2: Generalization error of heavy-tailed algorithms
o Experimental works: complex dependence between « and the accuracy gap
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The simplified model we study
Simplified model
Continuous-time model:
dW, = —V Vs(W,)dt + odL?.
Discrete version:

WS, = WP —nVVs(WP) +naols.

LY is a Lévy process, for o € (0, 2]:
@ « = 2 corresponds to Brownian motion (Gaussian noise).
@ the smaller « the higher the tail of the noise.

@ We also added regularization, for technical reasons:

- -~ A
Vs(w) = Ls(w) + 3 [l
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Previous works

For a fixed time horizon T > 0, the goal is to get a bound on:

Gs(Wr) == L(Wy) — Ls(Wr), (3)

where (W;)¢>o is solution of the previous equation.
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Previous works

For a fixed time horizon T > 0, the goal is to get a bound on:
Gs(Wr) := L(Wr) — Ls(Wr),

where (W;)¢>o is solution of the previous equation.

Previous approaches:
o Fractal-based approaches [9]

> great in some settings but...
» does not predict the observed tail-index behavior

o Stability-based approaches [7, 6]:
» Only expected bound
» Huge dependence on the dimension d
» Can predict the non-monotonic behavior wrt «
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Our work: New theoretical approach

We combine new PAC-Bayesian techniques with the study of the associated
‘fractional’ Fokker-Planck equation, as done for Langevin dynamics [5, 2, 4].

th = —VVS(Wt)dt-FUdL? — gut = _O'? (_A)% Ut—f—diV(UtVVS),
t

with u; the probability density of W;.
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Our work: New theoretical approach

We combine new PAC-Bayesian techniques with the study of the associated
‘fractional’ Fokker-Planck equation, as done for Langevin dynamics [5, 2, 4].

dW, = —VVs(W,)dt + odly = g“t = —0f (—)% ue + div(:V Vs),
t

with u; the probability density of W;.

Main result (informal, partial)
With probability at least 1 — (:

Kog [T ~ 2 log(3/¢) + A
Evry s [Gs(WT)]§25\/F’;/ EUHVLS(WE)H dt+%7 (4)
0

with:
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Proof idea?

@ Inspired from existing works in the case of Gaussian noise
e Computation of an entropy flow, inspired by [3]:

d )
2 KL(u, i) = — 6°Bu, i) — Ju,(x) VLV Eyw)dx

AT

Distribution at  Distribution
. New term:
time t related to the . K s
Bregman integral

()

00

I1Pu,(x)dx

1 C
< 2—J||VFS<x)||2ut(x>dx £ JIIVI og A2

Fisher information

o Most of the complexity is contained in the term (—A)? u, called the
fractional Laplacian.

@ The main technical idea is to bound the so-called Bregman integral term.
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Proof idea? (2)

o It allows to use PAC-Bayesian theory

o If the loss is s-subgaussian, we prove that:

Bty [Go(Wy)] < 20y KL ) 08 (3/),
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Proof idea? (2)

o It allows to use PAC-Bayesian theory
o If the loss is s-subgaussian, we prove that:

KL(ut, o) + log(3/¢)

sy [Gs(Wr)] < W : . (5)

Main result (informal, partial)
With probability at least 1 — (:

Koo [T - 2 log(3/¢) + A
IEWTNUT[GS(WT)]SZS\/F’S/ EUHVLS(WE)H dt—l—%, (6)
0

with:
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Quantitative analysis

e Gaussian limit: Ko .9 — %
a—2~

@ High-dimensional limit:

(2—a)l (1—

o 5) di-% (7)

)

~Y
d—o0 R2—“a2°‘/2
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Quantitative analysis

e Gaussian limit: Kpg —> 3.
a—2~

@ High-dimensional limit:

(-0 (1-%) , .

1—2
ad Y, T Rrmagpez 9 (7)
Phase transition
In the limit d — oo, the constant term is:
Ka,d Poch
g , ®)
Iof n(o/do)>
where dy := d/(R?) is a “reduced dimension”.
We identify two regimes whether o+v/dy > 1 or ov/dy > 1.
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Experimental results

o AN T
@ 0.8 M —-=-- 1 of the mean generalization error wrt a
>
o 0.6
[
o 0.4
> O
9
S o2/
3
o
0.0 1
]
M
- =0.2
3
£ 0.4
U}
X o6
40000 60000 80000 100000 120000 140000 160000
Number of parameters d
—— Meanaccuracy gap | o o —— Mean accuracy gap
5.5 i
g g85
&5.0 280
) o
g 275
g g
g4s 370
S S
< <
6.5
a.0
6.0
16 17 19 20 16 17 19 2.0
Tail Index a Tail Index a

Figure: (up) Correlation (Kendall's 7) between « and the accuracy gap. FCN2 trained on
MNIST. Green curve: average 7 over 10 random seeds. Black curve is the correlation

between « and the average accuracy gap over 10 seeds.
on bounds for heavy-tailed SDEs

(lINnk | March 27th, 2024 11/15


https://arxiv.org/abs/2402.07723

Experimental results 2
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Figure: Estimated bound versus accuracy gap for a FCN2 on MNIST, for different values
of R: 1 (top left), 3 (top right), 7 (bottom left), 15 (bottom right).
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Experimental results 3

We perform the linear regression:
log(G) ~ Flog(d) + C, (10)

and “estimate” o according to our model & := 2 — 47,
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Figure: Regression of the tail-index « from the accuracy error, for a FCN2 trained on
MNIST.
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Conclusion
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