
Simplicity Bias of Two-Layer Networks beyond Linearly

Separable Data

Nikita Tsoy Nikola Konstantinov

INSAIT, Sofia University

ICML 2024

Tsoy and Konstantinov (INSAIT) Simplicity Bias ICML 2024 1 / 18



Motivation

Train and test distributions differ in the real-world (Redman, 2016)

Distribution shifts substantially hurt performance (Gulrajani and Lopez-Paz, 2021;
Koh et al., 2021)

Networks often rely on shortcuts: spurious rules that holds only on train data
(Geirhos et al., 2020)

E.g., texture bias in CV (Geirhos et al., 2019) or heuristics in NLP (McCoy et al.,
2019)
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Simplicity Bias

One explanation of shortcuts is simplicity bias: the propensity of networks to rely on
“simple” features (Shah et al., 2020)

Preference for features from simpler datasets (Shah et al., 2020; Hu et al., 2020)

Preference for linear boundaries for linearly separable data (Phuong and Lampert,
2021; Lyu et al., 2021; Wang and Ma, 2023)

Limited theoretical understanding of non-linear cases

Tsoy and Konstantinov (INSAIT) Simplicity Bias ICML 2024 3 / 18



Simplicity Bias

One explanation of shortcuts is simplicity bias: the propensity of networks to rely on
“simple” features (Shah et al., 2020)

Preference for features from simpler datasets (Shah et al., 2020; Hu et al., 2020)

Preference for linear boundaries for linearly separable data (Phuong and Lampert,
2021; Lyu et al., 2021; Wang and Ma, 2023)

Limited theoretical understanding of non-linear cases

Tsoy and Konstantinov (INSAIT) Simplicity Bias ICML 2024 3 / 18



Simplicity Bias

One explanation of shortcuts is simplicity bias: the propensity of networks to rely on
“simple” features (Shah et al., 2020)

Preference for features from simpler datasets (Shah et al., 2020; Hu et al., 2020)

Preference for linear boundaries for linearly separable data (Phuong and Lampert,
2021; Lyu et al., 2021; Wang and Ma, 2023)

Limited theoretical understanding of non-linear cases

Tsoy and Konstantinov (INSAIT) Simplicity Bias ICML 2024 3 / 18



Simplicity Bias

One explanation of shortcuts is simplicity bias: the propensity of networks to rely on
“simple” features (Shah et al., 2020)

Preference for features from simpler datasets (Shah et al., 2020; Hu et al., 2020)

Preference for linear boundaries for linearly separable data (Phuong and Lampert,
2021; Lyu et al., 2021; Wang and Ma, 2023)

Limited theoretical understanding of non-linear cases

Tsoy and Konstantinov (INSAIT) Simplicity Bias ICML 2024 3 / 18



Research Question

Does the simplicity bias provably emerge in non-linearly separable datasets?
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Setting

Two-layer networks, f (θ, x) :=
∑m

j=1 ujϕ(vj , x), where ϕ is ReLU-like activation

Binary cross entropy loss, L(θ) := 1
n

∑n
i=1 ℓ(f (θ, xi)yi), where ℓ(z) := ln(1 + e−z)

Small initialization, θ(0) = σθ0, where σ is small

Balanced initialization, |uj(0)| = ∥vj(0)∥
Training with gradient flow, dθ

dt
= −∇L(θ)
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Initial Condensation

First, consider the phase where scale grows from small scale σ to small scale r := σ
1

1+κ∗ .
During that phase:

Neurons divide into two types: prominent and non-prominent

Prominent neurons align around several directions that do not depend on the
network width

Non-prominent neurons do not contribute to the decision boundary

Thus, the network learns only few data-dependent features
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Initial Condensation

Consider G (vj) :=
1
n

∑n
i=1(−ℓ′(0))ϕ(vj , xi)yi (notice that G does not depend on network

width) and σ = r 1+κ∗

Theorem

In the limit r → 0, ∃P ⊆ [m], (u∗j ∈ R, v̂∗j ∈ Sd−1)mj=1 such that for T1 :=
1
λ
ln
(
r
σ

)
, we get

∀j ∈ P |uj(T1)− ru∗
j | =o(r)

∥v̂j(T1)− v̂∗j ∥ =o(1), |G (v̂∗j )| = max
v̂∈Sd−1

|G (v̂)|

∀j ∈ [m] \ P |uj(T1)| = ∥vj(T1)∥ =o(r)
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Further Growth

Now, consider the phase where scale grows from small scale r to constant data-dependent
scale ε. During that phase:

Prominent neurons remain inside their alignment clusters

Non-prominent neurons still do not contribute to the decision boundary

Thus, the simplicity bias persists even when the weights grow to a constant scale
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Simplicity Bias on XOR-data

Assume that

1 Positive points cluster around e1 and −e1

2 Negative points cluster around e2 and −e2
3 Points are symmetric under reflections

−1.0 −0.5 0.0 0.5 1.0
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Simplicity Bias on XOR-data

In this setting,

Initially, the network will behave like 4-neuron network

If the underlying 4-neuron network converges, the original network will behave like
4-neuron network even at the end of training

Thus, our alignment results might hold even in the later stages of training
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Simplicity Bias on MNIST-CIFAR10 data

Train ResNet-18 on the train part of MNIST-CIFAR10 domino
data (Shah et al., 2020)

▶ MNIST image above, CIFAR10 image below
▶ Labels come from CIFAR10
▶ Classes are perfectly correlated

Periodically, use last layer to classify OOD portion of the
domino dataset

▶ The input structure is the same
▶ However, top MNIST image may come from any class

Figure: Examples of train
(left) and test (right)
inputs
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Simplicity Bias on MNIST-CIFAR10 data

Bad accuracy on the OOD task

The network relies on “simple”
MNIST-related features

Simplicity bias becomes stronger
towards the end of training
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Figure: Accuracy and scale of the logistic regression
on the OOD task
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Simplicity Bias on MNIST-CIFAR10 data
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Discussion

Simplicity bias exists even in non-linearly separable datasets

It manifests as the alignment of features in few data-dependent directions

It can be observed even in real-world datasets and architectures
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