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I Introduction

Motivation: joint learning the structure and parameters of SNN models
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Example: white matter tracts (via diffusion tensor imaging) Structural brain network

The brain can autonomously learn the strength and structure
Neural plasticity of the brain: ¥ of synaptic connections.

Brain networks can adaptively generate various complex
neural network structures.

Neuromorphic computing 1S a novel computing technology mspired by the
way the human brain stores and processes information.




I Introduction

Related Work: unstructured pruning is not hardware friendly

Unstructured Pruning Methods
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Figure 1. This method model different states of SNN
weights, facilitating weight optimization for pruning.[1]
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Unstructured Pruning Methods
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Figure 2. The synaptic connection pruning and
growth procedures proceed every iteration.[2]

[1] Chen, Y., Yu, Z., Fang, W., Ma, Z., Huang, T., and Tian, Y. State transition of dendritic spines improves learning of sparse spiking neural
networks. In International Conference on Machine Learning, pp. 3701-3715. PMLR, 2022.
[2] Shen, J., Xu, Q., Liu, J. K., Wang, Y., Pan, G., and Tang, H. Esl-snns: An evolutionary structure learning strategy for spiking neural networks.

~arXiv preprint arXiv:2306.03693, 2023.
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Method: The Spiking Channel Activity-based (SCA) Structure Learning Framework

Training Training Training Training l i
k-th ch. 1 -~ ———__ pruned channel s NS I
.““ - o = ; Convl BN1
y : BN1 SN1
~ SN1 Convl
Structure Leamlng Structure Learmng Structure Leamning l l
e -— T, L 1 Conv?2 BN2
| Filter Pruning Selective Growth |
: spikes  importance score BN gamma gradient : i l
: chl;-r?riel . Sl R chl;-r:illel .' G001 : BN2 SN2
[ . X |
| A e ;‘ {3 000008 | l l
| : |
d AR
: gggggel J pfie N\ \Q§ O  o.00086 re_gr:)w :
| Ty | SN2 Conv2
| WiR WL |
: NN 3 {3 0.00016 | l (? ;
| s N N |
l S a 0.00079 '
o _.__ _________ = O DM B Post-activation Pre-activation
(a) The SCA structure learning framework. (b) Network structures.

Figure 3. The schematic illustration of the SCA structure learning framework.
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Excitation: Membrane potential increases, termed depolarization.

Inhibition: Membrane potential decreases, termed hyperpolarization.
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Figure 4. Spiking Neuron Model. Figure 5. Excitatory postsynaptic potential (EPSP).
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Filter Pruning: a certain proportion of convolutional kernels are pruned based on

channel importance scores.

Selective Growth: some channels are reactivated based on the gradient magnitudes of

the Gamma parameters in BN layers.
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Figure 6. Filter pruning and selective growth.

Algorithm 1 The Overall Training Framework.

Input: Input data X . Labels Y.
Output: Pruning channels ratio p%. Mask update ratio ¢%.
The weight W. The weight mask M.
1: Initialize the weight W;

2: fo
3:

__
SR oS

riin [1, epoch| do
Learn weight parameters based on surrogate gradient
under L1 regularization;
Learn weight connection based on structure learning
rule:
(1) Prune ¢% channels, resulting in the removal of
(p + q)% channels;
(2) Regrow ¢% channels, maintaining a pruning ratio
of p%;
for each layer of the model do

W=MoW,
end for

end for )
Completely remove the channels corresponding to zero

positions in the mask to obtain the compressed network

m

odel.

12: return: The lightweight SNN.




Experiments--Performance
Results: Evaluation under different pruning ratios
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Figure 7. The performance of the SCA structure learning framework.

93.0 12 165
(LL17  g11.17 L41 Fieo
92.5 - 10 [ 155
Lo [150 Y
% an -145 Q
5,920 - -8 <
) \ -140 @
o -7 s
3 * *— 135 €
Q 9154 564 \ L6 9
< o\ N 130 g
s 5 =
o ' L1225 @
[ S
91.0 -4 &
3.10 [ 120 ©
‘\‘2 63 Fe L[q45 Q@
90.5 4 \'1 59 F2  L110
| A
. F1 k105
90.0 T T T T T T T T T 1~ 0 - 100
0 o1y o1 0.2 0.3 0.4 0.5 06 0.7
Pruned Channels Ratio
5Conv+1FC on DVS-CIFAR10 dataset ;95‘ :_\CCUFHCV (%)
aseline
—o— Parameters (M)
—*— Synops (M)
74.0 - F1.2 120
Liq 115
73.5 L 1.10
F1.0 1.05
73.0 1 oo [100 o
Loos &
o8 <
725+ o0 o
© o7 Fo8s 5
> c
I3 Foso &
Q 72.0+ o6
< Lo75 @
- [}
17 05 070 ==
0 715 0
[ 04 [085 E
Lo 5
F060 &
71.0 F03 [o55 O
Lo2 [0.50
70.5 L
% "~ 0.45
®) 08 - 0.40
70.0 T T T T T T T T 00 Loss
0 oLt 0.1 0.2 03 0.4 0.5 06




I Experiments--Structure Learning ‘g ICML

Results: This indicates that the structural learning framework, as the network structure
evolves, autonomously adapts to an appropriate structure.
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(b) The evolution of network structure
during the training process.
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Figure 8. Analysis of structural changes in the SCA framework.




I Experiments--Ablation ICML

OMh

Results: The SCA framework’s mechanism for identifying redundant
channels and reactivating pruned channels autonomously searches for an
appropriate network structure.
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Figure 9. Analysis of the effectiveness of the SCA structure learning framework.
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Summary and Future Outlook:

@ Lightweight and high-performance SNNs can better leverage their advantages of low power
consumption. The structured pruning methods can result in regular, sparse SNN models,

making them more hardware-friendly.

@ The approach proposed in this paper starts from the perspective of biological plasticity,
combining pruning and regrowth in an adaptive manner during training to explore suitable
lightweight network structures.

@ This is of significant value for deploying high-performance, low-memory SNNs on
neuromorphic chips.
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Thank you!




