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Background

Bilevel optimization can effectively capture the inherent nested structures of problems,
thus, it recently has been widely used in many machine learning tasks such as hyper-
parameter learning, meta learning and reinforcement learning.

Upper-Level
min F(z) = f(a:,y*(::c))/
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s.t. y*(x) € arg min g(z, )
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\ Lower-Level
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Background

1. When ¢(z,y) on variable y is strongly convex and twice differentiable,

min F(x) = f (2" (x)

toy* i
s-t. y*(2) € arg min g(z,y)

VE(r) = Vof (24" () ~ Viya(a.y* @) [V2ya(a.y" @) Vyf ey (@)

I Approximate

B(z.y) = Vol (e.9) ~ V2,0(0.9) [Vya(a.)| V()



Background

1. When g¢(z,y) on variable y is strongly convex and twice differentiable,

O(x,y) = Vaof(x,y) — Vi,9(z,y) [Vf,yg(fﬂ, y)] _IVyf (,9)

Approximated Gradient Algorithm [4]

for k=0,1,..., K —1do
fort=0,1,..., 7T —1do
U =k — YVy9(Tr, Uh);
end for
Set Yri1 = Y ;
Lk4+1 — LTk — )\(I)(Cb"ka yk+1)§
end for

[4] Ghadimi, Saeed, and Mengdi Wang. "Approximation methods for bilevel programming." arXiv preprint arXiv:1802.02246 (2018).



Background

2. When g(z,y) on variable y is non-strongly-convex,

min F(z) = f(z,y"(z))

Optimization . :
s:t. y" () € arg min g(z, y)
min

l Equivalent
Single-Level meRd’yeRpf(a?, y)

Constrained _
S.t. X, — x, — min g(x, SO
Optimization a(z,y) = g(z,y) yeRpg( y)



Background

2. When 9(33, y) on variable y is convex or non-convex,

Penalized Gradient Algorithm [5]

for k=0,1,...,K —1do

fort=0,1,...,7 —1do

uitt = yh — YVyg(@e, yh);

end for

Set 4(z,y) = g(x,y) — g(x, Y3 );

Try1 = Tk — MV f(2r, yr) + auVeq(2r, yr)):

Uk+1 = Yk — MVyf(zr, y) + @ Vyq(zr, yr));
end for

N\

Penalty parameter

[5] Ye, M,, Liu, B., Wright, S., Stone, P., and Liu, Q. Bome! bilevel optimization made easy: A simple first-order approach. In NeurlPS, 17248-17262, 2022.
[6] Shen H, Chen T. On penalty-based bilevel gradient descent method, ICML: 30992-31015, 2023.
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Existing Algorithms for Nonconvex-PL Bilevel

In this talk, we force on solving the nonconvex-Polyak-tojasiewicz (PL) bilevel
optimization:

nonconvex on x and y

/

Qo F(x) = f(@y7(@))

s.t. y*(x) € arg min g(-fl?ay)

yERP \

nonconvex- PLony




Existing Algorithms for Nonconvex-PL Bilevel

Recently, most existing methods build on penalty or Lagrangian methods by
solving the following transformed constrained optimization, but they suffer
from high convergence (or gradient) complexity.

Lopmmin S ()

s.t. g(m,y) — min g(x,y) <0

yERP

BOME [5] ,V-PBGD[6], Prox-F2BA [8],SLM [9]

[5]Ye, M., Liu, B., Wright, S., Stone, P., and Liu, Q. Bome! bilevel optimization made easy: A simple first-order approach. In NeurlIPS, 17248-17262, 2022.
[6] Shen H, Chen T. On penalty-based bilevel gradient descent method, ICML, 2023: 30992-31015.

[8] Kwon J, Kwon D, Wright S, et al. On penalty methods for nonconvex bilevel optimization and first-order stochastic approximation[J]. arXiv preprint
arXiv:2309.01753, 2023.

[9] Lu S. SLM: A Smoothed First-Order Lagrangian Method for Structured Constrained Nonconvex Optimization. Advances in NeurlPS, 2023.



Existing Algorithms for Nonconvex-PL Bilevel

Afterwards, our MGBIiO [2] method directly solves the nonconvex-PL bilevel optimization

o F(z) = f(z,y7(2))

t. y"(x) € arg min ¢g(x,
s-t. y*(2) € arg min g(z, y)

[2] Huang, Feihu. "On momentum-based gradient methods for bilevel optimization with nonconvex lower-level." arXiv preprint
arXiv:2303.03944 , 2023.



Existing Algorithms for Nonconvex-PL Bilevel

Assumption 1. The function g(z,-) satisfies the p-Polyak-Lojasiewicz (PL) condition for some
>0 if for any given x € X, it holds that reasonable J

vy € R, mild

IVyg(@, y)II” = 2u(9(2, y) — ming(z,y)),
Assumption 2. The function g(x,y) satisfies

Q(szg(az, y*())) € [, Ly,

where y*(z) € argmin, g(x,y), and o(-) denotes the eigenvalue (or singular-value) function and
Ly, > p>0.

Support

Lemma B.1. For a p-PL function h(z) : RY — R that is twice differentiable, at any x* € arg min,, h(x),
Anin(V2R(2%)) > p,

where A\t

2. (+) denotes the smallest non-zero eigenvalue.



Existing Algorithms for Nonconvex-PL Bilevel

g(z,y) on variable y is non-convex and satisfies PL condition

men;lélﬁd Flz) = f(:r,y (w)) Nonconvex- PL

s.t. y*(x) € arg m%&n g(az,y) —ony
yekP

—1

VF(2) = Vaf (25" (@) = V2,9(2,9"(2)) | V3,9(2, 5" @) Vyf(@,y"(@))

I Approximate

O(z,y) = Vo f(2,y) — Va,9(x,9) (Spr, [Viyg(z,y)]) Vi f(z,y)



Existing Algorithms for Nonconvex-PL Bilevel

Algorithm 1 MGBiO Algorithm
1: Input: T, parameters {v, \,7;} and initial input z; € X and y; € R?;
2: fort=1,2,...,7T do
3: v = Vyg(xe,ye), ue = Vo f(xe, ), e = Vyf(ae, 1), Ge = V?Eyg(ﬂ?tayt);
4 Hy =81, [szg(:rt,ytﬂ =U,0,Ul |, where 0, ; € [u,L,] foralli=1,--- ,p;

50wy =uy — Gy(Hy) thy = Vo f(x, ) — Gt( i1 (Ugiht)/et,iUt,i)3
6: Ty = argmingey {(wt,$> + %Hx - ﬂftHQ} and z¢11 = o + 0 (Teg1 — T4); It reqUIreS Compute expenS|Ve
7o U1 = Yr — Avg and yer1 = Y + (G — Ye); . . .
s end for Hessian/Jacobian matrices and
9: Output: Chosen uniformly random from {z;}7_;. I
P Y ety its inverses.
Algorithm Reference g(z,-) L.H.on f(-,-) Complexity Loop(s) | H.J.F.
BOME (Liu et al., 2022) PL / local-PL O(e 1) /0(e %) Double N4
- ~15 ~15 e o
V-PBGD | (Shen & Chen, 2023) | PL /local-PL O(e )1 0(e ) Double N4
GALET (Xiao et al., 2023) SC/PL O(e ")/ Meaningless | Triple / \
SLM (Lu, 2023) PL / local-PL O(e %)/ 0(e3*) | Double N \\‘—///
Prox-F?BA | (Kwon et al., 2023) | Proximal-EB Vv O(e %) 70(¢ %) | Double Vv
F’BA (Chen et al., 2024) | PL/local-PL Vv OeH70(e Y Double vV
MGBiO (Huang, 2023b) PL / local-PL O HYy70(e ) Single
AdaPAG (Huang, 2023a) PL / local-PL O(e ) 10(e ) Single
HJIFBiO Ours PL / local-PL O(e HY70(e ") Single Vv
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Optimal Hessian/Jacobian-Free Algorithm

In our paper [1], we propose an optimal Hessian/Jacobian-Free method (i.e., HIFBiO) to
directly solve the following nonconvex-PL bilevel optimization:

nonconvex on X and Yy

convex and possibly
\ non-smooth, e.g.,

min r.oy) () o 0 zex
mERd,'yEy*(ac) f( ,y) Qb( ) o) {—i—oo, elsewise

s.t. y* (x) = '
y"(z) = arg min g(z,y)

nonconvex- PL ony

[1] Feihu Huang. Optimal Hessian/Jacobian-Free Nonconvex-PL Bilevel Optimization. ICML, 2024.



Optimal Hessian/Jacobian-Free Algorithm

As our MGBIO [2], we have

F(x) = f(z,y"(2))
VE(@) = Vol (0," () = V(e 5 (0) [Va,00 " @)] Vyf oy (@)

I Approximate

Vi(@,y) = Vaf(@,y) — Va9, y) (S, [Visg(@,1)]) " Vyf(@,y)

I Equivalent

Vi(@,y,v*) = Vaf(z,y) — Va,g(z,y)v’

1

* . _ T
v’ = arg min {R(:c,y, v) = 50 S [Viyd(@ v)]v — 0" Vi f(, y)}-



Optimal Hessian/Jacobian-Free Algorithm

Under this case, we can use the following iterations to solve the nonconvex-PL bilevel

problem:
Y1 = Yo — AVyg(ze, ye) . o
y Ti41 = Pg(,) (iﬂt, Vf(xt, ye, Ut)) N\
| ver1 = Pr, (e — TV R(zt, Yz, v¢)) “\\__//
computational
Vi@, y,v) = Vof(a,y) - Viyg(fﬂa y)v C;)T;ejzci)

V’UR(:ana U) — S[;.L,Lg] [szg(xa y):l’U — Vyf('x)y)
: 1
]P;() ('Tt:wt) — arg ;IEHRI}E {(wtax> + %”IE o xt”? -+ Qb(x)}

Pr,(v)={veRl:|v||<r, >0}, 0< 1y, < %



Optimal Hessian/Jacobian-Free Algorithm

In our paper, thus, we propose two finite-difference estimators and a new projection
operator to avoid computing expensive Hessian/Jacobian matrices and its projection :

j(x,y,v,ée) _ Vaeg(x,y+ 56’0)2—5 Veg(x,y — dev) — Vﬁyg(ﬂ?,y)v

Definition 3. Given matriz H € RP*?P and vector v € R, and S[“,Lg][-] 1S a projection operator on the

set {H € RP*P .y < o(H) < Ly} where o(-) denotes the eigenvalue function, and Pr,(-) is a projection
operator onto the set {v € R : |[v|]| < rv}, then we define a new projection operator M,, (-,-) on set
{H € RP*P v € R? : ||Hv|| < rn}, which satisfies

M’rh (H7 U) = S[M,Lg] [H]P""v (U)?

where 0 < rp, < ryLg. For notational simplicity, let M., (H, 'v) = M., (H’U).



Optimal Hessian/Jacobian-Free Algorithm

In our paper, thus, we propose two finite-difference estimators and a new projection
operator to avoid computing expensive Hessian/Jacobian matrices and its projection :

Fi(z,y,0,5,) = v Y+ 0) 7 VoI Y = O00) | ey V2, 9(a, )0

—

M., (H(:r:t, Yy, Vg, (56)) ) S [szg(a:, y)]v




Optimal Hessian/Jacobian-Free Algorithm

Then our HJFBIO method use the following iterations:

Yit1 = Yt — AVy9(Te, Y1)

Tt+1 = PQ;(.) (:Cta 6Jc(i?ﬂtv Yt Ut)) é
Vt+1 = Pr, (’Ut — ’TvvR(Q’t: Yt Uf)) g

computational

V(e ye, ve) = Vo f (e, ye) — J (@4, e, Vg, 0c) complexity
O(p + d)

S

VUR($t?yta Ut) — M?“h, (f]('xt? Y, Ut, 56)) o V’yf(xt? yt)

: 1
IP;() (xta wt) — arg fel%[@il}f {(’UJt, $> + %HSE’ o xt”Q + (:b(x)}

Cry

Pro(o) = {v €R”:fJu] < 7o >0} 0 <ro < =



Optimal Hessian/Jacobian-Free Algorithm

Algorithm 1 Hessian/Jacobian-free Bilevel Optimization
(i.e, HIFB1O) Algorithm

1: Input: 7, learning rates A > 0, v > 0, 7 > 0, and
tuning parameters o0, > 0, r, > 0, r;, > 0, and initial
input x1 € R y; € RP and v; € RP

2: fort=1,2,...,T do

3:  Compute u; = Vyg(x¢, y¢), and update yy 1 = yp —

A’U;t; N
4: Qompute wy = Vf(xe,y,v) = Vaof(ze,ye) —
J(LUt, Y¢, Uy, 56), and update LTt41 = Pg() ($t, 'wt);

5: Compuie hy = 6UR(xt,yt,fUt) =
Mrh(H(iUtayt,Utafse)) - Vyf(iﬁtayt), and

update vy =Py, (fut — frht);
6: end for

7: Output: Chosen uniformly random from {z;}Z_;.
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Convergence Analysis

Table 1: Comparison of gradient (or iteration) complexity between our method and the existing methods in solving
bilevel problem (1) for finding an e-stationary solution (||VF(z)||? < € or its equivalent variants, where F(z) = f(x,y)
with y € y*(z)). Here g(x,-) denotes function on the second variable y with fixing variable x. SC stands for strongly
convex. H.J.F. stands for Hessian/J acobian-Free. L.H. stands for Lipschitz Hessian condition. The Prox-F2>BA and F?BA
methods rely on some strict conditions such as Lipschitz Hessian of function f(x,y). Note that the GALET (Xiao et al.,

2023) method simultaneously uses the PL condition, its Assumption 2 (i.e., let oy = inf, , {0}, (V2 g(z,y))} > 0 for
all (x,y)) and its Assumption 1 (i.e., V,gy g(x,y) is Lipschitz continuous). Clearly, when Hessian matrix ng(x y) is
singular, its Assumption 1 and Assumption 2 imply that the lower bound of the non-zero singular values o, is close to

zero (i.e., o, — 0), under this case, the convergence results of the GALET are meaningless, e.g., the constant L,, =
£ + \/_ fg 2£f 0

Og

— 4-oc used in its Lemmas 6 and 9. Under the other case, the PL condition, Lipschitz continuous of

Hessian and its Assumption 2 (the singular values of Hessian is bounded away from 0, i.e., 0, > 0) imply that GALET
assumes strongly convex (Detailed discussion in the Appendix B).

Algorithm Reference g(z,-) L.H.on f(-,") Complexity Loop(s) | H.J.F.
BOME (Liu et al., 2022) | PL/local-PL O(e=1%)10(e7?) Double v
V-PBGD | (Shen & Chen, 2023) | PL/local-PL O(e 15)70(e 1) | Double V
GALET (Xiao et al., 2023) SC /PL O(e~') / Meaningless | Triple
SLM (Lu, 2023) PL / local-PL O(e3%)70(e3%) | Double | +/
Prox-F°BA | (Kwon et al., 2023) | Proximal-EB N O(e1°)10(e *°) | Double N
F’BA (Chen et al., 2024) | PL/local-PL Vv O(e 1) 10(eh) Double N
MGBiO (Huang, 2023b) PL / local-PL O(e HY10(e ) Single
AdaPAG (Huang, 2023a) PL / local-PL O(e 1) 10(e™ ) Single
HJFBiO Ours PL / local-PL O(e 1) 10(e™1) Single vV




Convergence Analysis

min f(x)

xR
1 finding
2
IV @) < e .
requiring/ wumng
Lipschitz gradient Lipschitz gradient + Lipschitz Hessian
Lower bound gradient (query) Lower bound gradient (query)
complexity complexity
—1 —0.75
O(e ) O(e 7)

[10] Carmon, Y., Duchi, J. C., Hinder, O., and Sidford, A. Lower bounds for finding stationary points i. Mathematical Programming,
184(1-2):71-120, 2020



Convergence Analysis

|V E(z)]|? < € or its equivalent variants, where F'(x)

= f(z,y) with y € y*(z) = arg miny, g(z, y).

Algorithm Reference g(z,-) L.H.on f(-,-) Complexity Loop(s) | H.J.F.
BOME (Liu et al., 2022) | PL/local-PL O(e 1°) 1 0(e7?) Double v
V-PBGD | (Shen & Chen, 2023) | PL/local-PL O(e=1°)/0(e~**) | Double v
GALET (Xiao et al., 2023) SC/PL O(et)/ Meaningless Triple
SLM (Lu, 2023) PL / local-PL O(e37)/0(¢3%) | Double | +/
Prox-F’BA | (Kwon etal., 2023) | Proximal-EB vV O(e=1°)/10(e= 1) | Double vV
F°BA (Chen et al., 2024) | PL/local-PL vV O(e 1 /0(e 1) Double vV
MGBiO (Huang, 2023b) PL / local-PL O(e1)/0(e7 1) Single
AdaPAG (Huang, 2023a) PL / local-PL O(e 1) /0(eh) Single
HJFBiO\\ Ours PL / local-PL O(e 1) 10(e” 1)\ Single V
Only uses full first-order information, and only assume the upper-level Optimal

objective function f(x,y) has Lipschitz gradient.
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Experimental Results

1) Bilevel Polyak-tojasiewicz Game

1
min —z! Pz + 21 Ry,
r€Rd 2

1
s.t. min —y? Quy + =T Ry,
yeRd 2

where P = 15" pi(p))", Q=137 qi(q;)", R* =137 1 0.01r} (r})T and R? = L 3" | 0.0172(r])7.
Here the samples {p;}™_,, {q¢:}",, {r}}™ , and {r?}"_, are independently drawn from Gaussian
distributions N(0,Xp), N(0,Xq), N(0,Xg:) and N(0,Xgz2), respectively. Meanwhile, we set
Yp = U'DYUYT, where U € R¥*! (I < d) is column orthogonal, and D! € R™*! is diagonal
and its diagonal elements are distributed uniformly in the interval [u, L] with 0 < pu < L. Let
Yo = U?D?*(U?*)?, where U? € R*™! is column orthogonal, and D? € R'*! is diagonal and its
diagonal elements are distributed uniformly in the interval [u, L] with 0 < g < L. We also set
Yrr = 0.001VH(VH)T and X2 = 0.001V2(V?)T, where each element of V! V2 € RY*? is indepen-
dently sampled from normal distribution A/(0,1). Since the covariance matrices ¥ p and X are
rank-deficient, it is ensured that both P and () are singular. Hence the lower-level and upper-level
objective functions may be not convex, while they satisfy the PL condition. In this experiment,
we set d = 50, [ = 48 and n = 2500. For fair comparison, we set the basic learning rate as 0.01



Experimental Results

1.4 . 2.5 .
& HJFBIO (ours) —&—HJFBIO (ours)
- MGBIO \ MGBIO
—+#—BOME —+— BOME
V-PBGD 9l V-PBGD
—#— GALET —#*— GALET
SLM SLM
& BVFSM —&— BVFSM

o ve T e e A Tedr e e A
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0.2 1.}‘/__ SOEoOY H 3
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Figure 1: PL Game: norm of gradient vs number of itera-
tion under d = 100 (Left) and d = 200 (Right).



Experimental Results

2) Hyper-Representation Learning

methods. Learning hyper-representation is one of key points of meta learning, which extract better
feature representations to be applied to many different tasks. Here we specifically consider the
hyper-representation learning in matrix sensing task. Given n sensing matrices {C; € R¥*4}n_
with n observations e; = (C;, H*) = trace(C! H*), where H* = U*(U*)? is a low-rank symmetric
matrix with U* € R¥*". The goal of matrix sensing task is to find the matrix U *, which can be
represented the following problem:

%((Ci,UUT) — ).



Experimental Results

Then we consider the hyper-representation learning in matrix sensing task, which be rewritten the
following bilevel optimization problem:

min
:EGRG‘,X'P 1 |D’U|

ZE z,y"( (35)

€D,

S.t. € arg min li(x
y () gyeRd |Dt| Z )

where U = [y; 2] € R¥*" is a concatenation of x and y. Here we define variable x to be the first 7 —1
columns of U and variable y to be the last column. Meanwhile, D; denotes the training dataset.
and D, denotes the validation dataset. The ground truth low-rank matrix H* is generated by H* =
U*(U*)T, where each entry of U* is drawn from normal distribution N(0, %) independently. We
randomly generate n = 20d samples of sensing matrices {C;}?_; from standard normal distribution,
and then compute the corresponding no-noise labels e; = (C;, H*). We split all samples into two
dataset: a train dataset D; with 40% data and a validation dataset D, with 60% data.



Experimental Results

1500 ; : ] Ro0Yy ' ' '
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Figure 2: Losses of the algorithms under the case of d =
100 (Left) and d = 200 (Right).



= Background

= Existing Algorithms for Nonconvex-PL Bilevel Optimization
= Qur Optimal Hessian/Jacobian-Free Algorithm

= Convergence Analysis

= Experimental Results

" Conclusions



Conclusions

1) We proposed an optimal Hessian/Jacobian-Free method for nonconvex-PL Bilevel
optimization.

2) We proved our HJFBiO method obtain an optimal gradient complexity for finding
stationary solutions of nonconvex-PL Bilevel optimization.
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