



# Large Language Models Can Automatically Engineer Features for Few-Shot Tabular Learning

Sungwon Han, Jinsung Yoon, Sercan O Arik, Tomas Pfister - ICML 2024



# Importance of few-shot tabular learning

### Datasets present labeling challenges.

- Tasks concerning rare diseases with few patients
- Tasks requiring specialized domain knowledge and expert input
- Tasks that are sensitive or private, making it hard to source annotators

In datasets with limited labels, conventional tabular models are prone to overfitting.  $\Rightarrow$  Learn spurious correlations that do not reflect the actual patterns.



# Dealing with limited ground-truth labels

Leveraging prior knowledge about the problem **to provide an appropriate inductive bias** during model training

- Simultaneously train on various real-world benchmark tabular datasets [<u>TransTab</u>-NeurIPS'22]
- Utilize unlabeled dataset with self-supervised objective [SCARF-ICLR'21, STUNT-ICLR'23]
- Generate synthetic dataset with diverse distributions for pretraining [<u>TabPFN</u>-ICLR'23]
- Utilize Large Language Model (LLM) for inference
  [LIFT-NeurIPS'22, TabLLM-AISTATS'23, MediTab-Arxiv'23]



# Three limitations of existing LLM-based approaches

- 1. At least one LLM query per sample is required for inference, making it **computationally expensive**.
- 2. Fine-tuning the LLM is often required, **limiting its application to full parameter accessible models**.
- 3. Most approaches are **not suitable with lengthy prompts** from highdimensional tabular data.

Why do these limitations occur?

 $\Rightarrow$  Existing approaches utilize LLM to make an inference sample by sample.



### Main Idea

Understand the "criteria" by which the LLM makes predictions. Extract the underlying reasons, rather than running inference per each sample!

### $\Rightarrow$ Extract rules per each answer class!



# Highlighted Results

1. Evaluated over 11 tabular datasets, FeatLLM significantly outperforms baselines (10% on average) in few-shot settings.

| Data    | Shot | LogReg | XGBoost | SCARF | TabPFN | STUNT | In-context | TABLET | TabLLM | Ours  |
|---------|------|--------|---------|-------|--------|-------|------------|--------|--------|-------|
| Average | 4    | 65.47  | 50.00   | 58.22 | 62.93  | 62.36 | 68.44      | 68.69  | 70.26  | 77.86 |
|         | 8    | 72.03  | 60.52   | 62.18 | 69.53  | 67.47 | 70.41      | 70.53  | 72.76  | 79.31 |
|         | 16   | 76.33  | 69.72   | 71.69 | 74.37  | 69.72 | 72.72      | 73.02  | 76.22  | 80.70 |

# **Highlighted Results**

2. FeatLLM even shows a relatively low inference time, comparable to that of conventional tabular methods (e.g., XGBoost).

| Model                   | Training (in seconds) | Inference (in milliseconds) |
|-------------------------|-----------------------|-----------------------------|
| LogReg                  | 0.721                 | 0.001                       |
| XGBoost                 | 28.512                | 0.006                       |
| RandomForest            | 1.343                 | 0.001                       |
| SCARF                   | 426.859               | 0.002                       |
| TabPFN                  | 0.440                 | 1.149                       |
| STUNT                   | 642.796               | 0.006                       |
| In-context <sup>†</sup> | N/A                   | 463.000                     |
| TABLET <sup>†</sup>     | 0.813                 | 523.254                     |
| TabLLM                  | 251.242               | 335.127                     |
| FeatLLM†                | 860.094               | 0.006                       |

<sup>†</sup> These models employ API queries, where the runtime is subject to the API's status at the time of use.



# Highlighted Results

3. FeatLLM can handle high-dimensional tabular data (over 100 features) via feature bagging and ensembling.

| Communities  |                   | Shots              |                    | Myocardial    | Shots              |                    |                    |  |
|--------------|-------------------|--------------------|--------------------|---------------|--------------------|--------------------|--------------------|--|
| Communities  | 4                 | 8                  | 16                 | iviy ocurciai | 4                  | 8                  | 16                 |  |
| LogReg       | 67.45±13.26       | 73.73±5.45         | 72.55±4.83         | LogReg        | 51.25±3.85         | 55.34±1.11         | 60.00±5.16         |  |
| XGBoost      | $53.94{\pm}4.19$  | $66.65 {\pm} 4.50$ | $68.01 {\pm} 1.97$ | XGBoost       | $50.00 {\pm} 0.00$ | $55.63 {\pm} 2.92$ | $56.55 \pm 12.22$  |  |
| RandomForest | $66.09 \pm 10.52$ | $71.16 {\pm} 4.61$ | $71.66{\pm}4.81$   | RandomForest  | $51.91{\pm}4.49$   | $52.77 {\pm} 5.83$ | $54.16 {\pm} 4.53$ |  |
| SCARF        | $66.18 \pm 9.13$  | $72.69 {\pm} 3.79$ | $73.09{\pm}2.84$   | SCARF         | $47.70{\pm}4.10$   | $49.37 \pm 3.41$   | $54.31 \pm 1.42$   |  |
| STUNT        | $66.87 \pm 14.10$ | $76.36 {\pm} 4.55$ | 77.29±2.56         | STUNT         | $52.77 {\pm} 2.01$ | $55.40{\pm}4.41$   | 61.22±3.45         |  |
| FeatLLM      | 75.39±5.05        | 76.59±1.25         | $76.25 {\pm} 0.64$ | FeatLLM       | 52.87±3.44         | 56.22±1.64         | 55.32±9.15         |  |











