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Introduction

* Client-Level Fairness in FL[1,2]

* Uniform performance distributions of a global model across participating clients

* i.e., a global model (@) can be biased toward different clients.

F,(0) = 0.1,F,(0) = 2.3,F;(0) = 9.5,F,(8) = 0.6,F=(0) = 1.1

[1] Chen, H., Zhu, T., Zhang, T., Zhou, W., & Yu, P. S. (2023). Privacy and Fairness in Federated Learning: on the Perspective of Trade-off. ACM Computing Surveys.
[2] Li, T., Sanjabi, M., Beirami, A., & Smith, V. (2019, September). Fair Resource Allocation in Federated Learning. In International Conference on Learning Representations.



Introduction

* Stop Using Static Mixing Coefficient

K n:
min F(6) :=z wiE(6),  w=—
fcOcRd i=1 j=1

1
* Simple solution: imposing larger coefficients to the clients with larger losses

* Use adaptive mixing coefficient p = [p4, ..., px|" instead!

* This adaptive decision is sequentially made by the server.



Previous Works

* Research Gap: Truly Adaptive?

* Server only receives a single response vector (e.g., local losses [F;(0), ..., Fx (0)] ")
... for deciding another single mixing coefficient, p = [p4, ..., pk] -

* i.e., a sample-deficient situation!

Method Adaptive Mixing Coefficients

FedAvg[3] p; X W;
q-FedAvg[2] p; < w;Fi1(8),q € Ry
AFL[4] & FedMGDA[5] (a special case of q-FedAvg when g — )

TERM[ 6] p; < w; exp(AF;(8)),1 € R

Wi

x——— MeR
M — F;(8) >0

PropFair[7] pi

[2] Li, T., Sanjabi, M., Beirami, A., & Smith, V. (2019, September). Fair Resource Allocation in Federated Learning. In International Conference on Learning Representations.

[3] McMahan, B., Moore, E., Ramage, D., Hampson, S., & y Arcas, B. A. (2017, April). Communication-efficient learning of deep networks from decentralized data. In Artificial intelligence and statistics (pp. 1273-1282). PMLR.
[4] Mohri, M., Sivek, G., & Suresh, A. T. (2019, May). Agnostic federated learning. In International Conference on Machine Learning (pp. 4615-4625). PMLR.

[5] Hy, Z., Shaloudegi, K., Zhang, G., & Yu, Y. (2022). Federated learning meets multi-objective optimization. IEEE Transactions on Network Science and Engineering, 9(4), 2039-2051.
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[7]Zhang, G., Malekmohammadi, S., Chen, X., & Yu, Y. (2022). Proportional Fairness in Federated Learning. arXiv preprint arXiv:2202.01666.



Research Question

How can we improve the scheme of deciding
mixing coefficients so that it is truly adaptive

even under the sample-deficient condition?



Discovery

* Online Convex Optimization (OCO) as a Unified Language

* Exponentiated Gradient (EG [8])

« Forallt = 1,..,T, suppose we want to minimize a decision loss £(") (p) = — (p,r()) sequentially,
which is defined by a response vector r®) € RX and a decision variable p € Ag_;.

R(p) is a regularizer multiplied by a constant step size n € R,,.

p®*D = argmin £ (p) + nR(p)

PEAg—1
* Aslong as the regularizer R(p) is fixed as the negative entropy, i.e., R(p) = Y, p; logp;,

it has a closed-form update:

®) ®
e+ Pi eXp(n- /n)
i - .
1 exp (1 /)

[8] Helmbold, D. P., Schapire, R. E., Singer, Y., & Warmuth, M. K. (1998). On-line portfolio selection using multiplicative updates. Mathematical Finance, 8(4), 325-347.



Discovery

* EG Subsumes Existing Fair FL Algorithms

(t) (t)
(t+1) _ Pi EXP(TE ﬁ?)

P; .
Kapy? exp (5/m)

Method Response, ri(t) Last Decision, pl.(t) Step Size, 1

(t+1)

New Decision, p;

FedAvg[3] 0 w; 1

g-FedAvg[2]

(AFL[4] ifq > o) qlog F;(6) Wi 1

TERM[6] F,(6W) Wi 1/2

PropFair[7] —log (M —Fi(e(t))) W; 1
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Proposed Methods

* Fixing Suboptimal Designs in Existing Methods as EG

* i) Stateless decision making;: pl.(t) = w;
* ii) Fixed step size: 1
« iii) Decision loss without Lipchitz continuity and strict convexity guarantee: (9 (p) = — (p,r(®)

)

* Thelocal loss Fi(e(t)) corresponded to rl.(t is usually unbounded above, e.g., cross-entropy loss.



Proposed Methods

* Follow-The-Regularized-Leader (FTRL [9-12])

t
pt+D) = argminz @) +nt*YR(p)

* i) Stateful as mirroring all previous decision losses: Yt _, £ (p)

* ii) Time-varying step size: n(*+1)

* ...or time-varying regularizer: R+1) (p)

[9] Abernethy, J. D., Hazan, E., & Rakhlin, A. (2009). Competing in the dark: An efficient algorithm for bandit linear optimization.

[10] Hazan, E., & Kale, S. (2010). Extracting certainty from uncertainty: Regret bounded by variation in costs. Machine learning, 80, 165-188.

[11] Agarwal, A., & Hazan, E. (2005). New algorithms for repeated play and universal portfolio management. Princeton University Technical Report TR-740-05.

[12] Shalev-Shwartz, S., & Singer, Y. (2006, June). Online learning meets optimizationin the dual. In International Conference on Computational Learning Theory (pp. 423-437). Berlin, Heidelberg: Springer Berlin Heidelberg.



Proposed Methods

* Logarithmic Growth from Online Portfolio Selection [13]

* Metaphor: OPS sequentially assigns higher portfolio weights to bullish assets, to maximize:
« Logarithmic growth: ¥1_; log(1 + (p®, r®))

* The negative logarithmic growth as our decision loss to minimize:

2O (p) = — log(l + (p, r(t)))
* Lipschitz continuous and strictly convex (please see Lemma 4.1 and Lemma A.1)

* Loosely related to (rectified) min-max fairness notion

[13] Cover, T. M. (1991). Universal portfolios. Mathematical finance, 1(1), 1-29.



Proposed Methods

* Doubly Robust Estimator for Partially Observed Responses

* Client sampling (especially in the cross-device FL setting)
* The server can only observe partial entries of a response r(®...
* Doubly Robust Estimator [14-16]

* Denote € = P(i € S®) as a client sampling probability, S® is an index set of selected clients:

. 1(ies®)\_,, 1(ies®)
5O <1 _ T) o LES ) o)

where 7(®) = @Zies(t) ri(t). (Please see Lemma 4.3)

[14] Robins, J. M., Rotnitzky, A., & Zhao, L. P. (1994). Estimation of regression coefficients when some regressors are not always observed. Journal of the American statistical Association, 89(427), 846-866.
[15] Bang, H., & Robins, J. M. (2005). Doubly robust estimation in missing data and causal inference models. Biometrics, 61(4), 962-973.
[16] Dimakopoulou, M., Zhou, Z., Athey, S., & Imbens, G. (2019, July). Balanced linear contextual bandits. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 33, No. 01, pp. 3445-3453).



Proposed Methods

* Practical FL Settings Require Different Conditions

* Cross-silo FL (number of clients < number of rounds, i.e., K < T)
* e.g., K = 20 hospitals with T = 200 rounds [17]
* All clients can usually be participated in each round.
* Cross-device FL (number of clients > number of rounds, i.e., K > T)

« e.g., K = 1.5 x 10° users with T = 3,000 rounds [18]

* Client sampling is inevitably required.

[17] Hard, A., Rao, K., Mathews, R., Ramaswamy, S., Beaufays, F., Augenstein, S., ... & Ramage, D. (2018). Federated learning for mobile keyboard prediction. arXiv preprint arXiv:1811.03604.
[18] Dayan, I., Roth, H. R., Zhong, A., Harouni, A., Gentili, A., Abidin, A. Z., ... & Li, Q. (2021). Federated learning for predicting clinical outcomes in patients with COVID-19. Nature medicine, 27(10), 1735-1743.



Proposed Methods

* AAggFF: Adaptive Aggregation for Fair Federated Learning

» AAggFF-S:for cross-silo FL setting — Online Newton Step [19,20]

- t a Bt 2
pttD) = argmmz D) +1pll3 + —Z (g@,p—p™))",
T=1 2 2 =1

PEAg—1
where #()(p) is a linearized loss defined as #®)(p) = (p, g¥) and g\© = V¢ (p®),
(Please see pseudocodes in Appendix D)
* Runtime: O(K? + K?3)
« O(K3) for weighted projection to a simplex [21]

* Empirically moderate for the cross-silo setting

[19] Agarwal, A., Hazan, E., Kale, S., & Schapire, R. E. (2006, June). Algorithms for portfolio management based on the newton method. In Proceedings of the 23rd international conference on Machine learning (pp. 9-16).
[20] Hazan, E., Agarwal, A., & Kale, S. (2007). Logarithmic regret algorithms for online convex optimization. Machine Learning, 69, 169-192.
[21] Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87. Springer Science & Business Media, 2003.
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Proposed Methods

* AAggFF: Adaptive Aggregation for Fair Federated Learning

» AAggFF-D:for cross-device FL setting - FTRL[9-12]

t LoVt + 1K
p(t+l) = argminz PO (p) + —
7=1

pilogp;,
PE Ag—1 = J91og K i=1 l
where #()(p) is a linearized loss defined as #{ (p) = (p, g®) and g\® = V¢ (p®),

(Please see closed-form update in Remark 4.5 and pseudocodes in Appendix D)
e Runtime: O(K)

* Linear; favorable to the dross-device setting

9] Abernethy, J. D., Hazan, E., & Rakhlin, A. (2009). Competing in the dark: An efficient algorithm for bandit linear optimization.
o] Hazan, E., & Kale, S. (2010). Extracting certainty from uncertainty: Regret bounded by variationin costs. Machine learning, 80, 165-188.
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Shalev-Shwartz, S., & Singer, Y. (2006, June). Online learning meets optimization in the dual. In International Conference on Computational Learning Theory (pp. 423-437). Berlin, Heidelberg: Springer Berlin Heidelberg.



Theoretical Guarantee

* Regret Upper Bound for AAggFF-S

* Theorem (Regret Upper Bound for AAggFF-S)

Suppose Vp € Ax_4, let the decision {p(t): t € [T]} be derived by AAggFF-S for K clients during T rounds.

Then, the regret can be bounded above as:

Regret™) (p*) < 2L K (1 + log(l + L))
- 16K/)’

where ¢ = 4KL,, and § = f in the objective, and L, can be adjusted by the range of a response.




Theoretical Guarantee

* Regret Upper Bound for AAggFF-D

Theorem (Regret Upper Bound for AAggFF -D with Full Client Participation)

Suppose Vp € Ax_4, let the decision {p(t): t € [T]} be derived by AAggFF-D for K clients during T rounds
with client sampling probability C = 1.

Then, the regret can be bounded above as:

Regret™ (p*) < 2Lo,+/TlogK,

where L, can be adjusted by the range of a response.




Theoretical Guarantee

* Regret Upper Bound for AAggFF-D

Corollary (Regret Upper Bound for AAggFF -D with Partial Client Participation)

Suppose Vp € Ax_4, let the decision {p(t): t € [T]} be derived by AAggFF-D for K clients during T rounds
with client sampling probability ¢ € (0,1).

Being equipped with the doubly robust estimator #(, the regret can be bounded above in expectation as:
E[Regret™ (p*)] < O(Loo/TlogK),

where L, can be adjusted by the range of a response.




Experimental Results

* Setup

* Cross-silo (number of clients (K) < number of rounds (T))
* Berka (tabular): loan default prediction (2 classes)
* MQP (text): medical sentence similarity classification (2 classes)

« ISIC (image): skin cancer classification (8 classes)

* Cross-device (number of clients (K) > number of rounds (7))
* CelebA (image): smiling face recognition (2 classes)
* Reddit (text): language modeling (10,000 sentence tokens)

* SpeechCommands (audio): speech recognition (35 classes)

Cross-silo
Dataset K T
Berka 7 100
MQP 11 100
ISIC 1 50
Cross-device

Dataset K T
CelebA 9,343 3,000
Reddit 817 300
Speech 2,005 500

Commands




Experimental Results

* Boosted Performance in Both Cross-Silo and Cross-Device Settings

* Improved worst-case performance as well as little compromise on the average performance

* Low Gini coefficient: uniform performance distribution

Dataset Berka MQP ISIC Dataset CelebA Reddit SpeechCommands
[AUROC) (AUROC) (Acc. 5) (Acc. 1) (Acc. 1) (Acc. 3)
Method Avg.  Worst Best Gini Avg. Worst Best Gini  Avg.  Worst  Best Gini Method Avg. Warst Best Gini  Avg.  Worst Best Gini  Avg.  Worst Best Gini
() ) () () (1) Q) (1) (1) () (") )] (1) () 10% (1) 10%(1) (L) (1) 10%(1) 10%(%)  (4) () 10%(T)  10%(1) ()
80.09 48.06 99.03 1087 | 56.06 41.03 76.31 863 | 87.42 6992 9257 484 Feanvg [3) 70 8306 10000 786 | 1076 250 2086 2566 7551 793 100.00 2458
FedAvg [3] €
N 7070 49.02 9855 10.58 | 56.01 4128 7554 8.56 | 87.39 68.17 93.33  4.80 q-Fedhvg [ 88 5573 10000 182 ) 1276 438 2L8L 2334 ) 7834 L9 10000 2306
FL 4
_ _ S 90.71 5566 10000 T.90 | 1202 285 2074 2415 | 70.90 598 10000 26.37
79.98  49.44 98.07 10.62 | 56.80 40.22 79.38 8.68 | 41.50 2038 58.08 22.25 TERM  [6]
g-FedAvg [2]
88.33 4860 10000 975 | 1058 235 1909 2520 | 7245  9.65  100.00 23.68
80.11 4896 99.03 10.86 | 56.47 40.73 76.80 8.67 | R7.89  77.32  96.00  3.77 FedMGDA  [5]
TERM  [6]
. 87.25 4811 10000 1039 | 11.26  1.95  21.33 2597 | 7364  7.30  100.00 24.97
79.24  46.38 99.03 11.64 | 53.02 34.91 69.65 10.33 | 4236 2144 5921 2225 PropFair [7]
FedMGDA [s]
AAggFF-D 91.27  56.71 100,00 7.54 | 12.95 475  22.81 2259 | 76.68 14.54  100.00 21.42
79.61  49.44 98.07 1047 | 56.60 41.71 79.09 874 | 8388 5836 9135 791 (Propossd)
PropFair [7] )
AAggFF-8 80.93 52.08 99.03 10.16 | 56.63 41.79 7556 8.38 | 89.76 8517 9822  2.52

(Proposed)

McMahan, B., Moore, E., Ramage, D., Hampson, S., & y Arcas, B. A. (2017, April). Communication-efficient learning of deep networks from decentralized data. In Artificial intelligence and statistics (pp. 1273-1282). PMLR.
Mohri, M., Sivek, G., & Suresh, A. T. (2019, May). Agnostic federated learning. In International Conference on Machine Learning (pp. 4615-4625). PMLR.

Hu, Z., Shaloudegi, K., Zhang, G., & Yu, Y. (2022). Federated learning meets multi-objective optimization. IEEE Transactions on Network Science and Engineering, 9(4), 2039-2051.

Li, T., Beirami, A., Sanjabi, M., & Smith, V. (2020). Tilted empirical risk minimization. arXiv preprint arXiv:2007.01162.



Conclusion

* AAggFF finds better mixing coefficients

* through improved online convex optimization objectives.

* AAggFF is specialized into practical FL settings

* AAggFF-S for the cross-silo setting, and AAggFF-D for the cross-device setting;

both guarantee vanishing regrets.

* AAggFF pursues overall welfare in the federated system

* not only inducing uniform performances, but also maintaining decent average performances.



The End.



	슬라이드 1
	슬라이드 2: Introduction
	슬라이드 3: Introduction
	슬라이드 4: Previous Works
	슬라이드 5: Research Question
	슬라이드 6: Discovery
	슬라이드 7: Discovery
	슬라이드 8: Proposed Methods
	슬라이드 9: Proposed Methods
	슬라이드 10: Proposed Methods
	슬라이드 11: Proposed Methods
	슬라이드 12: Proposed Methods
	슬라이드 13: Proposed Methods
	슬라이드 14: Proposed Methods
	슬라이드 15: Theoretical Guarantee
	슬라이드 16: Theoretical Guarantee
	슬라이드 17: Theoretical Guarantee
	슬라이드 18: Experimental Results
	슬라이드 19: Experimental Results
	슬라이드 20: Conclusion
	슬라이드 21: The End.

