

Pursuing Overall Welfare in Federated Learning through Sequential Decision Making

Seok-Ju Hahn, Gi-Soo Kim, Junghye Lee

Introduction

- Client-Level Fairness in FL [1,2]
 - Uniform performance distributions of a global model across participating clients
 - i.e., a global model (θ) can be biased toward different clients.

 $F_1(\theta) = 0.1, F_2(\theta) = 2.3, F_3(\theta) = 9.5, F_4(\theta) = 0.6, F_5(\theta) = 1.1$

Introduction

• Stop Using Static Mixing Coefficient

$$\min_{\boldsymbol{\theta} \in \Theta \subseteq \mathbb{R}^d} F(\boldsymbol{\theta}) \coloneqq \sum_{i=1}^K w_i F_i(\boldsymbol{\theta}), \qquad w_i = \frac{n_i}{\sum_{j=1}^K n_j}$$

- Simple solution: imposing larger coefficients to the clients with larger losses
- Use adaptive mixing coefficient $\mathbf{p} = [p_1, \dots, p_K]^T$ instead!
 - This adaptive decision is sequentially made by the server.

Previous Works

• Research Gap: Truly Adaptive?

- Server only receives a single response vector (e.g., local losses $[F_1(\theta), ..., F_K(\theta)]^{\top}$)
 - ... for deciding another single mixing coefficient, $\boldsymbol{p} = [p_1, ..., p_K]^{\mathsf{T}}$.
 - i.e., a sample-deficient situation!

Method	Adaptive Mixing Coefficients
FedAvg[3]	$p_i \propto w_i$
q-FedAvg[2]	$p_i \propto w_i F_i^q(\boldsymbol{\theta}), q \in \mathbb{R}_{>0}$
AFL[4] & FedMGDA[5]	(a special case of q-FedAvg when $q \rightarrow \infty$)
TERM[6]	$p_i \propto w_i \exp(\lambda F_i(\boldsymbol{ heta}))$, $\lambda \in \mathbb{R}$
PropFair[7]	$p_i \propto rac{w_i}{M - F_i(\mathbf{\theta})}$, $M \in \mathbb{R}_{>0}$

[2] Li, T., Sanjabi, M., Beirami, A., & Smith, V. (2019, September). Fair Resource Allocation in Federated Learning. In International Conference on Learning Representations.

3] McMahan, B., Moore, E., Ramage, D., Hampson, S., & y Arcas, B. A. (2017, April). Communication-efficient learning of deep networks from decentralized data. In Artificial intelligence and statistics (pp. 1273-1282). PMLR.

[4] Mohri, M., Sivek, G., & Suresh, A. T. (2019, May). Agnostic federated learning. In International Conference on Machine Learning (pp. 4615-4625). PMLR.

[5] Hu, Z., Shaloudegi, K., Zhang, G., & Yu, Y. (2022). Federated learning meets multi-objective optimization. IEEE Transactions on Network Science and Engineering, 9(4), 2039-2051.

[6] Li, T., Beirami, A., Sanjabi, M., & Smith, V. (2020). Tilted empirical risk minimization. arXiv preprint arXiv:2007.01162.

[7] Zhang, G., Malekmohammadi, S., Chen, X., & Yu, Y. (2022). Proportional Fairness in Federated Learning. arXiv preprint arXiv:2202.01666.

Research Question

How can we improve the scheme of deciding **mixing coefficients** so that it is **truly adaptive** even under the sample-deficient condition?

Discovery

• Online Convex Optimization (OCO) as a Unified Language

- Exponentiated Gradient (EG [8])
 - For all t = 1, ..., T, suppose we want to minimize a decision loss $\ell^{(t)}(\mathbf{p}) = -\langle \mathbf{p}, \mathbf{r}^{(t)} \rangle$ sequentially, which is defined by a response vector $\mathbf{r}^{(t)} \in \mathbb{R}^{K}$ and a decision variable $\mathbf{p} \in \Delta_{K-1}$.

 $R(\mathbf{p})$ is a regularizer multiplied by a constant step size $\eta \in \mathbb{R}_{\geq 0}$.

$$\boldsymbol{p}^{(t+1)} = \operatorname*{argmin}_{\boldsymbol{p} \in \Delta_{K-1}} \ell^{(t)}(\boldsymbol{p}) + \eta R(\boldsymbol{p})$$

• As long as the regularizer $R(\mathbf{p})$ is fixed as the negative entropy, i.e., $R(\mathbf{p}) = \sum_{i=1}^{K} p_i \log p_i$, it has a closed-form update:

$$p_i^{(t+1)} = \frac{p_i^{(t)} \exp\left(r_i^{(t)}/\eta\right)}{\sum_{j=1}^{K} p_j^{(t)} \exp\left(r_j^{(t)}/\eta\right)}.$$

Discovery

• EG Subsumes Existing Fair FL Algorithms

 $p_i^{(t+1)} = \frac{p_i^{(t)} \exp\left(r_i^{(t)}/\eta\right)}{\sum_{j=1}^{K} p_j^{(t)} \exp\left(r_i^{(t)}/\eta\right)}$

Method	Response, $r_i^{(t)}$	Last Decision, $p_i^{(t)}$	Step Size, η	New Decision, $p_i^{(t+1)}$
FedAvg[3]	0	Wi	1	$\propto w_i$
q-FedAvg[2] (AFL[4] if $q \rightarrow \infty$)	$q\log F_i(\boldsymbol{\theta}^{(t)})$	Wi	1	$\propto w_i F_i^q(\boldsymbol{\theta}^{(t)})$
TERM[6]	$F_i(\boldsymbol{\theta}^{(t)})$	Wi	$1/\lambda$	$\propto w_i \exp\left(\lambda F_i(\boldsymbol{\theta}^{(t)})\right)$
PropFair[7]	$-\log\left(M-F_i(\boldsymbol{\theta}^{(t)})\right)$	Wi	1	$\propto \frac{W_i}{M - F_i(\boldsymbol{\theta}^{(t)})}$

[2] Li, T., Sanjabi, M., Beirami, A., & Smith, V. (2019, September). Fair Resource Allocation in Federated Learning. In International Conference on Learning Representations.
 [3] McMahan, B., Moore, E., Ramage, D., Hampson, S., & y Arcas, B. A. (2017, April). Communication-efficient learning of deep networks from decentralized data. In Artificial intelligence and statistics (pp. 1273-1282). PMLR.

[4] Mohri, M., Sivek, G., & Suresh, A. T. (2019, May). Agnostic federated learning. In International Conference on Machine Learning (pp. 4615-4625). PMLR.

[6] Li, T., Beirami, A., Sanjabi, M., & Smith, V. (2020). Tilted empirical risk minimization. arXiv preprint arXiv:2007.01162.

[7] Zhang, G., Malekmohammadi, S., Chen, X., & Yu, Y. (2022). Proportional Fairness in Federated Learning. arXiv preprint arXiv:2202.01666.

• Fixing Suboptimal Designs in Existing Methods as EG

- i) Stateless decision making: $p_i^{(t)} = w_i$
- ii) Fixed step size: η
- iii) Decision loss without Lipchitz continuity and strict convexity guarantee: $\ell^{(t)}(p) = -\langle p, r^{(t)} \rangle$
 - The local loss $F_i(\boldsymbol{\theta}^{(t)})$ corresponded to $r_i^{(t)}$ is usually unbounded above, e.g., cross-entropy loss.

• Follow-The-Regularized-Leader (FTRL [9-12])

$$\boldsymbol{p}^{(t+1)} = \underset{\boldsymbol{p} \in \Delta_{K-1}}{\operatorname{argmin}} \sum_{\tau=1}^{t} \ell^{(\tau)}(\boldsymbol{p}) + \eta^{(t+1)} R(\boldsymbol{p})$$

- i) Stateful as mirroring all previous decision losses: $\sum_{\tau=1}^{t} \ell^{(\tau)}(\mathbf{p})$
- ii) Time-varying step size: $\eta^{(t+1)}$
 - ... or time-varying regularizer: $R^{(t+1)}(\mathbf{p})$

- Logarithmic Growth from Online Portfolio Selection [13]
 - Metaphor: OPS sequentially assigns higher portfolio weights to bullish assets, to maximize:
 - Logarithmic growth: $\sum_{t=1}^{T} \log(1 + \langle \boldsymbol{p}^{(t)}, \boldsymbol{r}^{(t)} \rangle)$
 - The negative logarithmic growth as our decision loss to minimize:

 $\ell^{(t)}(\boldsymbol{p}) = -\log(1 + \langle \boldsymbol{p}, \boldsymbol{r}^{(t)} \rangle)$

- Lipschitz continuous and strictly convex (please see Lemma 4.1 and Lemma A.1)
- Loosely related to (rectified) min-max fairness notion

Doubly Robust Estimator for Partially Observed Responses

- Client sampling (especially in the cross-device FL setting)
 - The server can only observe partial entries of a response $r^{(t)}$...
- Doubly Robust Estimator [14-16]
 - Denote $C = P(i \in S^{(t)})$ as a client sampling probability, $S^{(t)}$ is an index set of selected clients:

$$\breve{r}_i^{(t)} = \left(1 - \frac{\mathbb{I}(i \in S^{(t)})}{C}\right) \bar{r}^{(t)} + \frac{\mathbb{I}(i \in S^{(t)})}{C} r_i^{(t)},$$

where
$$\bar{\mathbf{r}}^{(t)} = \frac{1}{|S^{(t)}|} \sum_{i \in S^{(t)}} r_i^{(t)}$$
. (Please see Lemma 4.3)

[14] Robins, J. M., Rotnitzky, A., & Zhao, L. P. (1994). Estimation of regression coefficients when some regressors are not always observed. Journal of the American statistical Association, 89(427), 846-866.
[15] Bang, H., & Robins, J. M. (2005). Doubly robust estimation in missing data and causal inference models. Biometrics, 61(4), 962-973.
[16] Dinakopoulou, M., Zhou, Z., Athey, S., & Imbens, G. (2019, July). Balanced linear contextual bandits. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 33, No. 01, pp. 3445-3453).

Practical FL Settings Require Different Conditions

- Cross-silo FL (number of clients < number of rounds, i.e., $K \ll T$)
 - e.g., K = 20 hospitals with T = 200 rounds [17]
 - All clients can usually be participated in each round.
- Cross-device FL (number of clients > number of rounds, i.e., $K \gg T$)
 - e.g., $K = 1.5 \times 10^6$ users with T = 3,000 rounds [18]
 - Client sampling is inevitably required.

AAggFF: <u>Adaptive Aggregation for Fair Federated Learning</u>

• AAggFF-S: for cross-silo FL setting – Online Newton Step [19,20]

$$\boldsymbol{p}^{(t+1)} = \underset{\boldsymbol{p} \in \Delta_{K-1}}{\operatorname{argmin}} \sum_{\tau=1}^{t} \tilde{\ell}^{(\tau)}(\boldsymbol{p}) + \frac{\alpha}{2} \|\boldsymbol{p}\|_{2}^{2} + \frac{\beta}{2} \sum_{\tau=1}^{t} \left(\langle \boldsymbol{g}^{(\tau)}, \boldsymbol{p} - \boldsymbol{p}^{(\tau)} \rangle \right)^{2},$$

where $\tilde{\ell}^{(t)}(\boldsymbol{p})$ is a linearized loss defined as $\tilde{\ell}^{(t)}(\boldsymbol{p}) = \langle \boldsymbol{p}, \boldsymbol{g}^{(t)} \rangle$ and $\boldsymbol{g}^{(t)} = \nabla \ell^{(t)}(\boldsymbol{p}^{(t)})$.

(Please see pseudocodes in Appendix D)

- Runtime: $\mathcal{O}(K^2 + K^3)$
 - $\mathcal{O}(K^3)$ for weighted projection to a simplex [21]
 - Empirically moderate for the cross-silo setting

^[19] Agarwal, A., Hazan, E., Kale, S., & Schapire, R. E. (2006, June). Algorithms for portfolio management based on the newton method. In Proceedings of the 23rd international conference on Machine learning (pp. 9-16). [20] Hazan, E., Agarwal, A., & Kale, S. (2007). Logarithmic regret algorithms for online convex optimization. Machine Learning, 69, 169-192. [21] Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87. Springer Science & Business Media, 2003.

• AAggFF: <u>Adaptive Aggregation for Fair Federated Learning</u>

• AAggFF-D: for cross-device FL setting – FTRL [9-12]

$$\boldsymbol{p}^{(t+1)} = \underset{\boldsymbol{p} \in \Delta_{K-1}}{\operatorname{argmin}} \sum_{\tau=1}^{t} \tilde{\ell}^{(\tau)}(\boldsymbol{p}) + \frac{L_{\infty}\sqrt{t+1}}{\sqrt{\log K}} \sum_{i=1}^{K} p_i \log p_i$$

where $\tilde{\ell}^{(t)}(p)$ is a linearized loss defined as $\tilde{\ell}^{(t)}(p) = \langle p, g^{(t)} \rangle$ and $g^{(t)} = \nabla \ell^{(t)}(p^{(t)})$.

(Please see closed-form update in Remark 4.5 and pseudocodes in Appendix D)

- Runtime: $\mathcal{O}(K)$
 - Linear; favorable to the dross-device setting

[9] Abernethy, J. D., Hazan, E., & Rakhlin, A. (2009). Competing in the dark: An efficient algorithm for bandit linear optimization.
 [10] Hazan, E., & Kale, S. (2010). Extracting certainty from uncertainty: Regret bounded by variation in costs. Machine learning, 80, 165-188.
 [11] Agarwal, A., & Hazan, E. (2005). New algorithms for repeated play and universal portfolio management. Princeton University Technical Report TR-740-05.

Theoretical Guarantee

• Regret Upper Bound for AAggFF-S

• **Theorem** (Regret Upper Bound for AAggFF-S)

Suppose $\forall p \in \Delta_{K-1}$, let the decision $\{p^{(t)}: t \in [T]\}$ be derived by AAggFF-S for K clients during T rounds. Then, the regret can be bounded above as:

$$\operatorname{Regret}^{(T)}(\boldsymbol{p}^{\star}) \leq 2L_{\infty}K\left(1 + \log\left(1 + \frac{T}{16K}\right)\right),$$

where $\alpha = 4KL_{\infty}$ and $\beta = \frac{1}{4L_{\infty}}$ in the objective, and L_{∞} can be adjusted by the range of a response.

Theoretical Guarantee

• Regret Upper Bound for AAggFF-D

• **Theorem** (Regret Upper Bound for AAggFF-D with Full Client Participation)

Suppose $\forall p \in \Delta_{K-1}$, let the decision $\{p^{(t)}: t \in [T]\}$ be derived by AAggFF-D for K clients during T rounds with client sampling probability C = 1.

Then, the regret can be bounded above as:

 $\operatorname{Regret}^{(T)}(\boldsymbol{p}^{\star}) \leq 2L_{\infty}\sqrt{T\log K}$,

where L_{∞} can be adjusted by the range of a response.

Theoretical Guarantee

Regret Upper Bound for AAggFF-D

• **Corollary** (Regret Upper Bound for AAggFF-D with Partial Client Participation)

Suppose $\forall p \in \Delta_{K-1}$, let the decision $\{p^{(t)}: t \in [T]\}$ be derived by AAggFF-D for K clients during T rounds with client sampling probability $C \in (0,1)$.

Being equipped with the doubly robust estimator $\breve{r}^{(t)}$, the regret can be bounded above in expectation as:

 $\mathbb{E}\left[\operatorname{Regret}^{(T)}(\boldsymbol{p}^{\star})\right] \leq \mathcal{O}\left(L_{\infty}\sqrt{T\log K}\right),$

where L_{∞} can be adjusted by the range of a response.

Experimental Results

• Setup

- Cross-silo (number of clients (*K*) < number of rounds (*T*))
 - Berka (tabular): loan default prediction (2 classes)
 - MQP (text): medical sentence similarity classification (2 classes)
 - ISIC (image): skin cancer classification (8 classes)
- Cross-device (number of clients (*K*) > number of rounds (*T*))
 - CelebA (image): smiling face recognition (2 classes)
 - Reddit (text): language modeling (10,000 sentence tokens)
 - SpeechCommands (audio): speech recognition (35 classes)

Cross-silo									
Dataset	K	Т							
Berka	7	100							
MQP	11	100							
ISIC	1	50							

Cross-device											
Dataset	K	Т									
CelebA	9,343	3,000									
Reddit	817	300									
Speech Commands	2,005	500									

Experimental Results

• Boosted Performance in Both Cross-Silo and Cross-Device Settings

- Improved worst-case performance as well as little compromise on the average performance
 - Low Gini coefficient: uniform performance distribution

Dataset	Berka				MQP				ISIC				Dataset	CelebA (Acc. 1)				Reddit					SpeechCommands (Acc. 5)				
Method	Avg.	Worst (↑)	Best	Gini (↓)	Avg.	Worst (↑)	Best	Gini (↓)	Avg. (↑)	Worst (↑)	Best (↑)	Gini (↓)	Method	Avg. (†)	Worst 10% (↑)	Best 10%(†)	Gini (↓)	Avg. (↑)	Worst 10%(†)	Best 10%(↑)	Gini (↓)	Avg. (↑)	Worst 10%(↑)	$\frac{10\%}{10\%(\uparrow)}$	Gini (↓)		
FedAvg [3]	80.09 (2.45)	48.06	99.03 (1.37)	10.87 (4.11)	56.06	41.03	76.31 (8.42)	8.63	87.42	69.92 (6.78)	92.57 (2.56)	4.84	FedAvg [3]	90.79 (0.53)	<u>55.76</u> (0.84)	<u>100.00</u> (0.00)	7.86 (0.30)	10.76 (1.45)	2.50 (0.21)	20.86 (3.64)	25.66 (0.49)	<u>75.51</u> (1.08)	7.93 (2.87)	<u>100.00</u> (0.00)	24.58 (1.34)		
AFL [4]	(1.14) 79.70	(25.89)	<u>98.55</u> (2.05)	10.58 (5.03)	56.01 (0.30)	(1.00) 41.28 (3.92)	(6.77)	<u>8.56</u> (1.24)	(2.31) (2.31)	68.17 (10.09)	93.33 (2.18)	4.80 (1.74)	q-FedAvg [2]	<u>90.88</u> (0.19)	55.73 (0.85)	<u>100.00</u> (0.00)	<u>7.82</u> (0.21)	<u>12.76</u> (0.32)	<u>3.38</u> (0.20)	$\frac{21.81}{(0.19)}$	<u>23.34</u> (0.34)	73.34 (0.47)	<u>11.19</u> (0.47)	<u>100.00</u> (0.00)	<u>23.16</u> (0.13)		
q-FedAvg [2]	79.98 (3.89)	49.44 (26.15)	98.07 (2.73)	10.62 (5.22)	56.89 (0.42)	40.22 (3.06)	79.38 (9.09)	8.68 (0.57)	41.59 (16.22)	20.38 (23.24)	58.08 (28.52)	22.25 (10.02)	TERM [6]	90.71 (0.65)	55.66 (0.93)	<u>100.00</u> (0.00)	7.90 (0.38)	12.02 (0.16)	2.85 (0.41)	20.74 (0.65)	24.15 (1.05)	70.90 (2.96)	5.98 (1.10)	<u>100.00</u> (0.00)	26.37 (1.32)		
TERM [6]	<u>80.11</u> (3.08)	48.96 (25.79)	99.03 (1.37)	10.86 (4.73)	56.47 (0.19)	40.73 (4.36)	76.80 (8.30)	8.67 (1.43)	<u>87.89</u> (1.69)	<u>77.32</u> (5.84)	<u>96.00</u> (3.27)	<u>3.77</u> (0.94)	FedMGDA [5]	88.33 (0.63) 87.25	48.60 (25.85) 48.11	(0.00)	9.75 (0.59)	10.58 (0.18)	2.35 (0.20) 1.95	19.09 (0.62) 21.33	25.20 (0.22) 25.97	72.45 (1.88) 73.64	9.65 (2.90) 7.30	<u>100.00</u> (0.00) 100.00	23.68 (1.27) 24.97		
FedMGDA [5]	79.24 (2.96)	46.38 (24.11)	99.03 (1.37)	11.64 (4.84)	53.02 (1.67)	34.91 (2.22)	69.65 (3.89)	10.33 (0.44)	42.36 (14.94)	21.44 (21.30)	59.21 (28.52)	22.25 (10.02)	PropFair [7]	(5.01) 91.27	(10.03) 56.71	(0.00)	(3.43) 7.54	(0.71) 12.95	(0.32) 4.75	(0.92) 22.81	(1.02) 22.59	(3.31) 76.68	(1.02) 14.54	(0.00)	(1.09) 21.42		
PropFair [7]	79.61 (4.49)	<u>49.44</u> (26.15)	98.07 (2.73)	$\frac{10.47}{(5.04)}$	56.60 (0.39)	<u>41.71</u> (3.80)	<u>79.09</u> (7.40)	8.74 (0.87)	83.88 (2.50)	58.36 (11.63)	91.35 (2.48)	7.91 (2.10)	(Proposed)	(0.07)	(0.08)	(0.00)	(0.04)	(0.39)	(0.76)	(1.36)	(0.28)	(0.80)	(2.58)	(0.00)	(0.81)		
AAggFF-S (Proposed)	80.93 (2.96)	52.08 (23.59)	99.03 (1.37)	10.16 (3.80)	<u>56.63</u> (0.54)	41.79 (4.43)	75.56 (6.53)	8.38 (0.77)	89.76 (1.03)	85.17 (3.87)	98.22 (1.66)	2.52 (0.38)															

[2] Li, T., Sanjabi, M., Beirami, A., & Smith, V. (2019, September). Fair Resource Allocation in Federated Learning. In International Conference on Learning Representations.

[3] McMahan, B., Moore, E., Ramage, D., Hampson, S., & y Arcas, B. A. (2017, April). Communication-efficient learning of deep networks from decentralized data. In Artificial intelligence and statistics (pp. 1273-1282). PMLR.

[4] Mohri, M., Sivek, G., & Suresh, A. T. (2019, May). Agnostic federated learning. In International Conference on Machine Learning (pp. 4615-4625). PMLR.

[5] Hu, Z., Shaloudegi, K., Zhang, G., & Yu, Y. (2022). Federated learning meets multi-objective optimization. IEEE Transactions on Network Science and Engineering, 9(4), 2039-2051.

[6] Li, T., Beirami, A., Sanjabi, M., & Smith, V. (2020). Tilted empirical risk minimization. arXiv preprint arXiv:2007.01162.

[7] Zhang, G., Malekmohammadi, S., Chen, X., & Yu, Y. (2022). Proportional Fairness in Federated Learning. arXiv preprint arXiv:2202.01666.

Conclusion

- AAggFF finds better mixing coefficients
 - through improved online convex optimization objectives.
- AAggFF is specialized into practical FL settings
 - AAggFF-S for the cross-silo setting, and AAggFF-D for the cross-device setting; both guarantee vanishing regrets.
- AAggFF pursues overall welfare in the federated system
 - not only inducing uniform performances, but also maintaining decent average performances.

The End.