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Original Prompt: 'A house in the style of Van Gogh’ 'A town in the style of Monet’
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‘R2D2 in street’ ‘President of United States’
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Replacing the text-
embeddings of the
original target prompt
within those layers alters
generated image.
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Update key and value matrices in cross-attention mechanism of identified layers.
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Edit: Remove tIe of ‘Van Gogh’

We can also edit neurons in the localized layers! Benefits of Localized Edits in Cross-Attn Layers
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Updating all layers sometimes lead to incorrect results
LocoEdit on SDv2-1 DiffQuickFix on SDv2-1
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