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• Question 1: How do we obtain these motifs?


• Question 2: Which motifs can attach to each other?

Traditional Approach

• Hand-designed by experts


• Uses known set of functional groups


• Only tens/hundreds of examples

Problem Setting

ChEMBL: >1 million
PubChem: >100 million

ZINC-22: >10 Billion
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• Compile known motifs specific 
to domain


• Ask experts to annotate 
attachment contexts (red)


• Compile known motifs specific 
to domain


• Ask experts to annotate 
attachment contexts (red)


• Annotate occurrences of motifs 
in existing molecules

Expert Approach (manual)

• Compile known motifs specific 
to domain

Our Workflow
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Expert Approach (semi-automated)

• Ask experts to fragment existing 
molecules (via breaking bonds)


• Extract the motifs 
programmatically


• Infer the contexts using dataset-
specific rules

Our Workflow



Automated approach

• Requires no expert input


• Heuristic fragmentation 
algorithm + pick simplest context 
(e.g. single atom)


• Other algorithms (e.g. BRICS)

Our Workflow



Each motif has black (base) and red (context).  

We match motifs A and B iff: 
• B’s red ~ subgraph of A’s black (b1) 
• A’s red ~ subgraph of B’s black (b2) 
• A’s red U b1 ~ B’s red U b2 
• A’s red U b1 is connected 

Obtain transition graph grammar rules: 
• A -> join(A, B) 
• B -> join(B, A) 
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Method
Transition Grammar Over Motif Graph



Random Walk: 56 à 9 à 71 à 70 à 5 à 70 à 71 à 18 à 71 à 70:1 à 5:1 (:1 means duplicate, not return) 
String Notation: 56 à 9 à 71[à 70 à 5, à 18] à 70:1 à 5:1 

Graph Theory Interpretation: Euler path of an edge-induced subgraph of the Motif Graph

Method (cont.)
Novel Representation Using Derivation of Grammar

Random Walk: 56 à 9 à 71 à 70 à 5 à 70 à 71 à 18 à 71 à 70:1 à 5:1 (:1 means duplicate, not return) 
String Notation: 56 à 9 à 71[à 70 à 5, à 18] à 70:1 à 5:1 

Graph Theory Interpretation: Euler path of an edge-induced subgraph of the Motif Graph



Method (cont.)
Learning Grammar by Taking Random Walks
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• Idea 1: Model random walks as stochastic discrete process with the 
Graph Heat Diffusion equation, where L is the Laplacian 
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• Idea 1: Model random walks as stochastic discrete process with the 
Graph Heat Diffusion equation, where L is the Laplacian 

• Idea 2: Make the Laplacian learnable, conditioned on a set-based 
memory c. 



Method (cont.)
Learning Grammar by Taking Random Walks
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• Idea 1: Model random walks as stochastic discrete process with the 
Graph Heat Diffusion equation, where L is the Laplacian 

• Idea 2: Make the Laplacian learnable, conditioned on a set-based 
memory c. 

The learnable parameters are 

Train parameters to maximize expectation of seeing the data. 



Method (cont.)
Grammar-induced Representation for Property Prediction
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Method (cont.)
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Method (cont.)
Grammar-induced Representation for Property Prediction
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• Idea 1:    induces a representation which can be 
fed into a downstream graph neural 
network(;    ,   ) to predict properties. 



Method (cont.)
Grammar-induced Representation for Property Prediction

5
9

14

18

5670

71

183

129
129

5
9

14

18

5670

71

183

129

5
9

14

18

5670

71

183

129

s
s

s

Random Walk Grammar

!!"!

s
s

71

s
Random Walk

Grammar

…

t = 0 t = 1 t = 9

Final Output

0

1

2

3

4

6
7

8

9

5

• Idea 1:    induces a representation which can be 
fed into a downstream graph neural 
network(;    ,   ) to predict properties. 

• Idea 2: We can train (    ,   ,    ) end-to-end! 

propertiesDataset

representation



Results
Data-Efficient Molecule Generation

• Ours generates more diverse molecules 
than training set


• Ours generates significantly more 
synthesizable molecules than previous 
grammar-based SOTA (DEG)


• Ours generates more unique, novel and 
diverse molecules compared to VAE-
based methods


• VAE-based methods cannot utilize expert 
motifs as well
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Results (cont.)
Data-Efficient Property Prediction

• Our method dominates GNN baselines (including motif-based ones)


• Our method outperforms fine-tuning SOTA pretrained methods


• Our method is competitive with SOTA data-efficient property predictor


• Expert motifs enhance performance, but heuristic-based motifs remain competitive with other methods


• Additional ablations showing better runtime and data-efficiency than Geo-DEG in paper
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Results (cont.)
Comparison with Motif-based Property Predictors

• Motif occurrence features (Bag-of-Motifs) overfits but does not generalize


• SOTA motif-based property predictor (HM-GNN) avoids overfitting but does not generalize well


• Both baselines cannot utilize expert motifs as well as Ours
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Discussion & Analysis
Advantages in interpretability

Unexpected finding! We find final layer representations of our 
GNN form two visually apparent clusters that correspond to the 
two primary ways to design molecules with high HOMO values.

Final layer representations from: a) Our method b) Our method (-expert) c) Pre-trained GIN d) 
HM-GNN. We apply a grayscale coloring map using the normalized value of the desired 
property (the darker the dot, the higher the HOMO).

We visualize two hard context-sensitive rules on PTC that correspond to design principles of 
the addition of halogen groups to further improve molecular toxicity.

We enumerate a list of such design rules in our paper.



• Teach Large Language Model to reason 
about expert annotations


• Teach Large Language Model to do motif 
extraction


• Induce graph grammars with Large 
Language Models


• Generalize to our method other domains 
beyond molecules

• Teach Large Language Model to reason 
about expert annotations


• Teach Large Language Model to do motif 
extraction


• Induce graph grammars with Large 
Language Models


• Generalize to our method other domains 
beyond molecules

Future Work
Integration of Large Language Models


