Quasi-Monte Carlo Features for Kernel Approximation

Zhen Huang

Department of Statistics, Columbia University

ICML 2024

Joint work with Jiajin Sun and Yian Huang

Zhen Huang Community Community Community Community Community Community Community Community Community Community

 QQ

化重新润滑

← ロ → → ← 何 →

- • Kernel method: mathematically well-founded, practically powerful modeling framework
- Remarkably effective in small and medium size problems with certain optimal statistical results (Kimeldorf & Wahba, 1970; Scholkopf et al., 2001; Caponnetto & De Vito, 2007)
- Infeasible for large scale problems due to its time and memory requirements

 Ω

 $\mathcal{A} \ \equiv \ \mathcal{B} \ \ \mathcal{A} \ \equiv \ \mathcal{B}$

Introduction

- Example: Kernel ridge regression (KRR)
	- space complexity $O(n^2)$; time complexity $O(n^3)$
- Various approximation techniques: Nyström (Williams & Seeger, 2000); Smola (2000); incomplete Cholesky decomposition (Bach & Jordan, 2003); random features (Rahimi & Recht, 2007) ...
- Focus on: random features (Rahimi & Recht, 2007)
	- based on Monte Carlo method
	- KRR: space complexity $O(nM)$; time complexity $O(nM^2 + M^3)$ with small $M \ll n$
	- well-understood theoretically (Sutherland & Schneider, 2015; Sriperumbudur & Szabo, 2015; Choromanski et al., 2018; Jacot et al., 2020; Lanthaler & Nelsen, 2023)

Goal: Further improve random features with Quasi-Monte Carlo method in place of Monte Carlo method

Zhen Huang [QMC Features](#page-0-0) ICML 2024 3 / 22

 Ω

メロトメ 御 トメ 君 トメ 君 トッ 君

Random features: Preliminary

Many kernels on $\mathcal{X} \subset \mathbb{R}^d$ have an integral representation:

$$
K(\mathbf{x}, \mathbf{x}') = \int_{\Omega} \psi(\mathbf{x}, \omega) \psi(\mathbf{x}', \omega) d\pi(\omega),
$$

π: probability measure over some space Ω $\psi(\cdot,\cdot)$: a function on $\mathcal{X}\times\Omega$.

Bochner's theorem: For any shift-invariant kernel $K(\mathbf{x}, \mathbf{x}') = h(\mathbf{x} - \mathbf{x}')$, \exists finite non-negative symmetric Borel measure μ s.t.

$$
h(\mathbf{x} - \mathbf{x}') = \int_{\mathbb{R}^d} e^{-i(\mathbf{x} - \mathbf{x}')^\top \omega} d\mu(\omega)
$$

=
$$
\int_{\mathbb{R}^d} \int_0^{2\pi} \frac{1}{\pi} \cos(\mathbf{x}^\top \omega + b) \cos((\mathbf{x}')^\top \omega + b) \, db \, d\mu(\omega).
$$

 Ω

Some popular shift-invariant kernels

$$
h(\mathbf{x} - \mathbf{x}') = \int_{\mathbb{R}^d} e^{-i(\mathbf{x} - \mathbf{x}')^\top \omega} \mathrm{d} \mu(\omega)
$$

- Gaussian kernel $e^{-\|\sigma({\bf x-x'})\|^2_2/2}$: $\mu \sim N({\bf 0}, \sigma^2 {\bf I}_d).$
- 2 Laplacian kernel $e^{ -\| \gamma({\bf x}-{\bf x'}) \|_1}{:}$ μ has Lebesgue density $\prod_{i=1}^d \frac{1}{\pi \gamma(1+(\alpha$ $\frac{1}{\pi \gamma (1+(\omega_i/\gamma)^2)}$ (Cauchy distribution).
- $\text{} \bullet \hspace{0.1cm}$ Cauchy kernel $\prod_{i=1}^{d} \frac{1}{1+(x_i-1)}$ $\frac{1}{1 + (x_i - x_i')^2 / \lambda^2}$: μ has Lebesgue density $\frac{\lambda}{2} e^{-\lambda ||\omega||_1}$ (Laplace distribution).

K ロ ▶ K 個 ▶ K ミ ▶ K ミ ▶ │ 큰 │ ◆ 9,9,9

Random features

Given the kernel function has integral representation

$$
\mathcal{K}(\mathbf{x}, \mathbf{x}') = \int_{\Omega} \psi(\mathbf{x}, \omega) \psi(\mathbf{x}', \omega) d\pi(\omega),
$$

 $K(\mathbf{x}, \mathbf{x}')$ can be approximated by

$$
K_M(\mathbf{x}, \mathbf{x}') = \frac{1}{M} \sum_{i=1}^M \psi(\mathbf{x}, \omega_i) \psi(\mathbf{x}', \omega_i),
$$

with $\omega_1, \ldots, \omega_M$ i.i.d. from π (Monte Carlo method)

Computation: Reduce KRR complexity to that of usual ridge regression (as \mathcal{K}_M is an inner product on $\mathbb{R}^M)$

Approximation error: $|K(x,x') - K_M(x,x')| = O_P(1/2)$ √ M)

K ロ ▶ K 個 ▶ K 글 ▶ K 글 ▶ │ 글 │ ◆) Q (º

RF approximation error: $|K(x, x') - K_M(x, x')| = O_P(1/2)$ √ M)

Limitation:

- **o** non-deterministic error bound
- error rate $\frac{1}{\sqrt{2}}$ $\frac{1}{M}$ decays slowly

Goal: Replace MC sequence $\omega_1, \omega_2, \ldots$ with QMC sequence to yield

- **o** deterministic error bound
- error rate $\frac{1}{M}$ (up to log factors)

イロト イ母 トイミト イヨト ニヨー りんぴ

Quasi-Monte Carlo (QMC) method

- QMC: Powerful tool in numerical integration
- Focus: Approximate $\int_{[0,1]^d} f(\textbf{x}) {\rm d}\textbf{x}$ with $\frac{1}{M} \sum_{i=1}^M f(\textbf{x}_i)$ for some well-chosen deterministic sequence $\{{\bf x}_i\}_{i=1}^M$ that are spread out more 'uniformly' in some sense.

Figure: Left: the first 25 points of the two-dimensional Halton sequence. Right: 25 i.i.d. random points from $\mathrm{Unif}[0,1]^2$.

QMC targets functions with finite variation:

Koksma-Hlawka inequality (Hlawka, 1961)

Suppose $f : [0, 1]^d \to \mathbb{R}$ has finite variation in the sense of Hardy and Krause $\mathcal{V}_{\text{HK}}(f)$. Then for any $\mathbf{x}_1, \ldots, \mathbf{x}_M \in [0,1]^d$, we have

$$
\left|\int_{[0,1]^d} f(\mathbf{x}) \mathrm{d}\mathbf{x} - \frac{1}{M} \sum_{i=1}^M f(\mathbf{x}_i)\right| \leq V_{\mathrm{HK}}(f) \mathcal{D}^*(\{\mathbf{x}_i\}_{i=1}^M),
$$

where $\mathcal{D}^*(\{\mathbf{x}_i\}_{i=1}^M)$ is the *star discrepancy^a* of the point set $\{\mathbf{x}_i\}_{i=1}^M.$

 ${}^{\mathsf{a}}\mathcal{D}^*(\{\mathbf{x}_i\}_{i=1}^M):=\mathsf{sup}_{\mathbf{t}\in[0,1]^d}\left|\text{Vol}(\mathcal{J}_{\mathbf{t}})-\frac{|\{i\in\{1,...,M\}:x_i\in\mathcal{J}_{\mathbf{t}}\}|}{M}\right|,$ where $J_t := [0, t_1] \times [0, t_2] \times \cdots \times [0, t_d)$ and $Vol(J_t) := \prod_{i=1}^d t_i$ is the volume.

<code>Halton sequence</code> (a QMC sequence): $\mathcal{D}^*(\{\mathbf{h}_i\}_{i=1}^M) \leq \mathcal{C}_H(d) (\log M)^d/M$

K ロ ▶ K 個 ▶ K ミ ▶ K ミ ▶ │ 큰 │ ◆ 9,9,9

Question: Can we directly apply QMC inequality when approximating

$$
K(\mathbf{x}, \mathbf{x}') = \int_{\Omega} \psi(\mathbf{x}, \omega) \psi(\mathbf{x}', \omega) d\pi(\omega)
$$

with

$$
K_M(\mathbf{x}, \mathbf{x}') = \frac{1}{M} \sum_{i=1}^M \psi(\mathbf{x}, \omega_i) \psi(\mathbf{x}', \omega_i) \quad ?
$$

造 Zhen Huang [QMC Features](#page-0-0) ICML 2024 10 / 22

化重新润滑

K ロ ▶ K 何 ▶

 2990

Question: Can we directly apply QMC inequality when approximating

$$
\mathcal{K}(\mathbf{x},\mathbf{x}')=\int_{\Omega}\psi(\mathbf{x},\omega)\psi(\mathbf{x}',\omega)\mathrm{d}\pi(\omega)
$$

with

$$
K_M(\mathbf{x}, \mathbf{x}') = \frac{1}{M} \sum_{i=1}^M \psi(\mathbf{x}, \omega_i) \psi(\mathbf{x}', \omega_i) \quad ?
$$

Negative result (Avron et al., 2016): For all shift-invariant kernels, the integral representation from Bochner's theorem has infinite variation (when written as the integral over the unit cube)

 Ω

Question: Can we directly apply QMC inequality when approximating

$$
\mathcal{K}(\mathbf{x},\mathbf{x}') = \int_{\Omega} \psi(\mathbf{x},\omega) \psi(\mathbf{x}',\omega) \mathrm{d}\pi(\omega)
$$

with

$$
K_M(\mathbf{x}, \mathbf{x}') = \frac{1}{M} \sum_{i=1}^M \psi(\mathbf{x}, \omega_i) \psi(\mathbf{x}', \omega_i) \quad ?
$$

Negative result (Avron et al., 2016): For all shift-invariant kernels, the integral representation from Bochner's theorem has infinite variation (when written as the integral over the unit cube)

Our contribution: For a class of shift-invariant kernels (including Gaussian kernel), even though the integrand has infinite variation, the singularity is mild, so the approximation error can still be well controlled:

$$
|K_M(\mathbf{x}, \mathbf{x}') - K(\mathbf{x}, \mathbf{x}')| \lesssim \frac{1}{M} \qquad \text{(up to log factors)}
$$

Zhen Huang Community Community Community Community Community Community Community Community Community Community

 Ω

イロト イ団 トイ ヨト イヨト 一番

2 [Approximate Kernel Functions with QMC](#page-12-0) [Shift-Invariant Kernels](#page-12-0)

[Non-Shift Invariant Kernels](#page-18-0)

3 [Application in Kernel Ridge Regression](#page-22-0)

4 0 8

 QQ

 $4.22 \times 4.$

Methodology for shift-invariant kernel

Assume μ from Bochner's theorem is a probability measure with independent components, with the *i*-th component having c.d.f. $\Phi_i(t)$

$$
\boldsymbol{\Phi}(\mathbf{t}):=(\Phi_1(\mathbf{t}),\ldots,\Phi_d(\mathbf{t}))^\top;\ \boldsymbol{\Phi}^{-1}(\mathbf{t}):=(\Phi_1^{-1}(\mathbf{t}),\ldots,\Phi_d^{-1}(\mathbf{t}))^\top
$$

By a change of variable,

$$
K(\mathbf{x}, \mathbf{x}') = h(\mathbf{x} - \mathbf{x}') =
$$

$$
\int_{[0,1]^{d+1}} 2 \cos(\mathbf{x}^\top \mathbf{\Phi}^{-1}(\mathbf{t}) + 2\pi b) \cos((\mathbf{x}')^\top \mathbf{\Phi}^{-1}(\mathbf{t}) + 2\pi b) \mathrm{d}b \mathrm{d}\mathbf{t}.
$$

$$
\omega := (\mathbf{t},b) \sim \mathrm{Unif}[0,1]^{d+1}; \ \psi(\mathbf{x},\omega) := \sqrt{2}\cos\left(\mathbf{x}^\top \mathbf{\Phi}^{-1}(\mathbf{t}) + 2\pi b\right).
$$

Our QMC features: Set $\omega_1, \ldots, \omega_M$ as the first M points in the Halton sequence (instead of M i.i.d. points), and define the approximate kernel $\mathcal{K}_\mathcal{M}(\cdot,\cdot):=\frac{1}{M}\sum_{i=1}^M\psi(\mathbf{x},\omega_i)\psi(\mathbf{x}',\omega_i)$ as in classical random features. **K ロ ト K 何 ト K ヨ ト K ヨ** OQ

Mild singularity condition for $1/M$ error bound

QMC Condition 1

 $K(\cdot, \cdot)$ is shift invariant with marginal c.d.f. Φ_i ($i = 1, \ldots, d$) satisfying $\frac{\mathrm{d}}{\mathrm{d}t} \Phi_i^{-1}$ $\zeta_i^{-1}(t) \leq \frac{C_i}{\min(t,1-t)}$ for some constant $C_i > 0$ and all $t \in (0,1)$. $\mathcal X$ is compact.

Gaussian kernel and Cauchy kernel over a compact domain satisfy QMC Condition 1.

 QQQ

 $A \oplus A \rightarrow A \oplus A \rightarrow A \oplus A$

Mild singularity condition for $1/M$ error bound

QMC Condition 1

 $K(\cdot, \cdot)$ is shift invariant with marginal c.d.f. Φ_i ($i = 1, \ldots, d$) satisfying $\frac{\mathrm{d}}{\mathrm{d}t} \Phi_i^{-1}$ $\zeta_i^{-1}(t) \leq \frac{C_i}{\min(t,1-t)}$ for some constant $C_i > 0$ and all $t \in (0,1)$. $\mathcal X$ is compact.

- Gaussian kernel and Cauchy kernel over a compact domain satisfy QMC Condition 1.
- They are examples of *universal kernels* (Micchelli et al., 2006): the associated function class (RKHS) can approximate any continuous function arbitrarily well
- Particularly useful in ML applications such as kernel ridge regression

 QQQ

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ ... 할

Theorem (Approximation error of QMC features)

Suppose $K(\cdot, \cdot)$ satisfies QMC Condition 1. Then there exists a constant $C > 0$ (depending on $\mathcal{X} \subset \mathbb{R}^d$ and K) such that for any $x, x' \in \mathcal{X}$ and $M > 2$,

$$
|K_M(\mathbf{x},\mathbf{x}')-K(\mathbf{x},\mathbf{x}')|\leq \frac{C(\log M)^{2d+1}}{M}.
$$

つへへ

Theorem (Approximation error of QMC features)

Suppose $K(\cdot, \cdot)$ satisfies QMC Condition 1. Then there exists a constant $C > 0$ (depending on $\mathcal{X} \subset \mathbb{R}^d$ and K) such that for any $x, x' \in \mathcal{X}$ and $M > 2$,

$$
|K_M(\mathbf{x},\mathbf{x}')-K(\mathbf{x},\mathbf{x}')|\leq \frac{C(\log M)^{2d+1}}{M}.
$$

Proof idea:

- **1** Singularity near the boundary is mild when QMC Condition 1 holds
- ² Halton sequence avoids the boundary of the unit cube (Owen, 2006)

 QQQ

イロト イ押ト イヨト イヨト

2 [Approximate Kernel Functions with QMC](#page-12-0) [Shift-Invariant Kernels](#page-12-0)

[Non-Shift Invariant Kernels](#page-18-0)

3 [Application in Kernel Ridge Regression](#page-22-0)

4 0 8

 QQ

化重 经间重

Non-shift invariant kernel

Bochner's theorem no longer applicable.

Whether $K(\cdot, \cdot)$ has an integral representation

$$
K(\mathbf{x}, \mathbf{x}') = \int_{[0,1]^p} \psi(\mathbf{x}, \omega) \psi(\mathbf{x}', \omega) \mathrm{d}\pi(\omega), \tag{1}
$$

needs to be considered on a case-by-case basis.

イロト イ押ト イヨト イヨト

 QQ

Non-shift invariant kernel

Bochner's theorem no longer applicable.

Whether $K(\cdot, \cdot)$ has an integral representation

$$
K(\mathbf{x}, \mathbf{x}') = \int_{[0,1]^p} \psi(\mathbf{x}, \omega) \psi(\mathbf{x}', \omega) d\pi(\omega), \tag{1}
$$

needs to be considered on a case-by-case basis.

QMC Condition 2: If [\(1\)](#page-19-0) exists, and $\forall x, x' \in \mathcal{X}$, $g(\omega) = \psi(x, \omega)\psi(x', \omega)$ is of bounded variation $V_{HK}(g) \leq C_0$, then QMC features yields

$$
|K_M(\mathbf{x}, \mathbf{x}') - K(\mathbf{x}, \mathbf{x}')| \leq C_0 C_H(p) \cdot \frac{(\log M)^p}{M}.
$$

 Ω

Examples

Non-shift invariant kernels to which QMC applies:

- **D** Min kernel: $K(u, v) = \min\{u, v\} = \int_0^1 1_{t < u} 1_{t < v} \mathrm{d}t$
- **Brownian bridge:** $K(u, v) = \min\{u, v\} - uv = \int_0^1 (1_{t < u} - u)(1_{t < v} - v) dt$
- **3 Iterative kernel** (Courant & Hilbert, 1953): $K_1(\cdot, \cdot)$: a 'smooth' kernel; μ : positive integrable function. Iterative kernel:

$$
\mathcal{K}_2(\mathbf{x},\mathbf{z}) := \int_{[\mathbf{0},\mathbf{1}]^d} \mathcal{K}_1(\mathbf{x},\mathbf{t}) \mathcal{K}_1(\mathbf{z},\mathbf{t}) \mu(\mathbf{t}) \mathrm{d}\mathbf{t}.
$$

 \bullet Natural cubic spline: $\mathcal{K}(u,v) = \int_0^1 (u \wedge t - ut) (v \wedge t - vt) \mathrm{d}t$ ⁵ Product kernels

KOD KAR KED KED E VAN

[Introduction](#page-1-0)

- [Shift-Invariant Kernels](#page-12-0)
- [Non-Shift Invariant Kernels](#page-18-0)

3 [Application in Kernel Ridge Regression](#page-22-0)

◆ ロ ▶ → 何

化重新润滑

 QQ

- Exact kernel ridge regression (KRR)
	- space complexity $O(n^2)$; time complexity $O(n^3)$
- **RF-KRR & QMCF-KRR**
	- space complexity $O(nM)$; time complexity $O(nM^2 + M^3)$

Question: How large should M be?

3 E K 3 E

 QQ

- Exact kernel ridge regression (KRR)
	- space complexity $O(n^2)$; time complexity $O(n^3)$
- **RF-KRR & QMCF-KRR**
	- space complexity $O(nM)$; time complexity $O(nM^2 + M^3)$

Question: How large should M be?

Short answer: Our QMC features require a smaller M.

To achieve the **same** error rate as the exact KRR:

- **D** RF-KRR: $M \asymp n^{\frac{2r}{2r+1}}$ (up to log factors)
- **2** QMCF-KRR: $M \asymp n^{\frac{1}{2r+1}}$ (up to log factors)
- $(r \in [1/2, 1]$: smoothness parameter of regression function)

Substantial improvement in smoother cases!

 Ω

KONKAPRA BRADE

Notations

 H : Reproducing kernel Hilbert space (space of function consisting of span $\{K(\mathbf{x},\cdot):\mathbf{x}\in\mathcal{X}\}\$ and their limits)

Integral operator $L: L^2(P_\mathbf{X}) \to L^2(P_\mathbf{X})$:

$$
\mathcal{L}f(\textbf{x}):=\mathbb{E}_{\textbf{X}\sim P_{\textbf{X}}}\left[\mathcal{K}(\textbf{X},\textbf{x})f(\textbf{X})\right].
$$

Fact: ran $L^{1/2} = H$

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『로 『 YO Q @

Notations

 H : Reproducing kernel Hilbert space (space of function consisting of span $\{K(\mathbf{x},\cdot): \mathbf{x} \in \mathcal{X}\}\$ and their limits)

Integral operator $L: L^2(P_\mathbf{X}) \to L^2(P_\mathbf{X})$:

$$
Lf(\mathbf{x}) := \mathbb{E}_{\mathbf{X} \sim P_{\mathbf{X}}} \left[K(\mathbf{X}, \mathbf{x}) f(\mathbf{X}) \right].
$$

Fact: ran $L^{1/2} = H$

Assume: The true regression function is in ran L^r for some $r \in [1/2, 1]$. (r: smoothness parameter)

KED KARD KED KED E VOOR

Theorem: QMCF-KRR error rate

Assume

- QMC condition holds: $\sup_{\mathbf{x},\mathbf{x}'\in\mathcal{X}}|K(\mathbf{x},\mathbf{x}')-K_M(\mathbf{x},\mathbf{x}')|\leq C\cdot\frac{\log^3 M}{M}$ M
- 2 Continuity conditions on the kernel
- ³ Standard Bernstein condition on the response Y
- \bullet True regression $f_{\mathcal{H}}\in\mathsf{arg\,min}_{f\in\mathcal{H}}\,\mathcal{E}(f)$ is in ran $L^r,\ r\in[1/2,1]$

Let $\lambda=\tilde{C}n^{-\frac{1}{2r+1}}\in(0,\textmd{e}^{-1}].$ Then $M=\frac{\log^{a}(1/\lambda)}{\lambda}=n^{\frac{1}{2r+1}}\log^{a}(n^{\frac{1}{2r+1}}/\tilde{C})/\tilde{C}$ is enough to guarantee that, for any $\delta \in (0,1]$, there exists n_0 , such that when $n \ge n_0$, with probability at least $1 - \delta$, the QMCF-KRR excess risk

$$
\mathcal{E}(\hat{f}_{\lambda,M}) - \inf_{f \in \mathcal{H}} \mathcal{E}(f) \leq C_1 n^{-\frac{2r}{2r+1}} \log^2 \frac{6}{\delta}.
$$

 $n^{-\frac{2r}{2r+1}}$: same error rate as in exact KRR (Caponnetto & De Vito, 2007) and RF-KRR (Rudi & Rosasco, 2017)

イロト イ母 トイミト イヨト ニヨー りんぴ

- **Goal:** Faster approximate computation of kernel methods using quasi-Monte Carlo methods.
- Main Methodology: Replace the Monte Carlo sequence in the random features approach (Rahimi & Recht, 2007) by quasi-Monte Carlo sequence.
- Theoretical Guarantee: With M features, the approximation error √ can be improved from $O_P(1/\surd M)$ to $O(1/M)$ (up to logarithmic factors), for a class of kernels including Gaussian kernels.

 QQQ