
Quasi-Monte Carlo Features for Kernel Approximation

Zhen Huang

Department of Statistics, Columbia University

ICML 2024

Joint work with Jiajin Sun and Yian Huang

Zhen Huang QMC Features ICML 2024 1 / 22



Introduction: kernel method

Kernel method: mathematically well-founded, practically powerful
modeling framework

Remarkably effective in small and medium size problems with certain
optimal statistical results (Kimeldorf & Wahba, 1970; Scholkopf et
al., 2001; Caponnetto & De Vito, 2007)

Infeasible for large scale problems due to its time and memory
requirements
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Introduction

Example: Kernel ridge regression (KRR)

space complexity O(n2); time complexity O(n3)

Various approximation techniques: Nyström (Williams & Seeger,
2000); Smola (2000); incomplete Cholesky decomposition (Bach &
Jordan, 2003); random features (Rahimi & Recht, 2007) ...

Focus on: random features (Rahimi & Recht, 2007)

based on Monte Carlo method
KRR: space complexity O(nM); time complexity O(nM2 + M3) with
small M � n
well-understood theoretically (Sutherland & Schneider, 2015;
Sriperumbudur & Szabo, 2015; Choromanski et al., 2018; Jacot et al.,
2020; Lanthaler & Nelsen, 2023)

Goal: Further improve random features with Quasi-Monte Carlo method
in place of Monte Carlo method
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Random features: Preliminary

Many kernels on X ⊂ Rd have an integral representation:

K (x, x′) =

∫
Ω
ψ(x, ω)ψ(x′, ω)dπ(ω),

π: probability measure over some space Ω
ψ(·, ·): a function on X × Ω.

Bochner’s theorem: For any shift-invariant kernel K (x, x′) = h(x− x′), ∃
finite non-negative symmetric Borel measure µ s.t.

h(x− x′) =

∫
Rd

e−i(x−x′)>ωdµ(ω)

=

∫
Rd

∫ 2π

0

1

π
cos
(

x>ω + b
)

cos
(

(x′)>ω + b
)
db dµ(ω).
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Some popular shift-invariant kernels

h(x− x′) =

∫
Rd

e−i(x−x′)>ωdµ(ω)

1 Gaussian kernel e−‖σ(x−x′)‖2
2/2: µ ∼ N(0, σ2Id).

2 Laplacian kernel e−‖γ(x−x′)‖1 : µ has Lebesgue density∏d
i=1

1
πγ(1+(ωi/γ)2)

(Cauchy distribution).

3 Cauchy kernel
∏d

i=1
1

1+(xi−x ′i )2/λ2 : µ has Lebesgue density λ
2 e
−λ‖ω‖1

(Laplace distribution).
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Random features

Given the kernel function has integral representation

K (x, x′) =

∫
Ω
ψ(x, ω)ψ(x′, ω)dπ(ω),

K (x, x′) can be approximated by

KM(x, x′) =
1

M

M∑
i=1

ψ(x, ωi )ψ(x′, ωi ),

with ω1, . . . , ωM i.i.d. from π (Monte Carlo method)

Computation: Reduce KRR complexity to that of usual ridge regression
(as KM is an inner product on RM)

Approximation error: |K (x , x ′)− KM(x , x ′)| = OP(1/
√
M)
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RF approximation error: |K (x , x ′)− KM(x , x ′)| = OP(1/
√
M)

Limitation:

non-deterministic error bound

error rate 1√
M

decays slowly

Goal: Replace MC sequence ω1, ω2, . . . with QMC sequence to yield

deterministic error bound

error rate 1
M (up to log factors)
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Quasi-Monte Carlo (QMC) method

QMC: Powerful tool in numerical integration

Focus: Approximate
∫

[0,1]d f (x)dx with 1
M

∑M
i=1 f (xi ) for some

well-chosen deterministic sequence {xi}Mi=1 that are spread out more
‘uniformly’ in some sense.

Halton Sequence Random Points (iid)

Figure: Left: the first 25 points of the two-dimensional Halton sequence. Right:
25 i.i.d. random points from Unif[0, 1]2.
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QMC targets functions with finite variation:

Koksma-Hlawka inequality (Hlawka, 1961)

Suppose f : [0, 1]d → R has finite variation in the sense of Hardy and
Krause VHK(f ). Then for any x1, . . . , xM ∈ [0, 1]d , we have∣∣∣∣∣

∫
[0,1]d

f (x)dx− 1

M

M∑
i=1

f (xi )

∣∣∣∣∣ ≤ VHK(f )D∗({xi}Mi=1),

where D∗({xi}Mi=1) is the star discrepancya of the point set {xi}Mi=1.

aD∗({xi}Mi=1) := supt∈[0,1]d

∣∣∣Vol(Jt)− |{i∈{1,...,M}:xi∈Jt}|
M

∣∣∣, where
Jt := [0, t1)× [0, t2)× · · · × [0, td) and Vol(Jt) :=

∏d
i=1 ti is the volume.

Halton sequence (a QMC sequence): D∗({hi}Mi=1) ≤ CH(d)(logM)d/M
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Question: Can we directly apply QMC inequality when approximating

K (x, x′) =

∫
Ω
ψ(x, ω)ψ(x′, ω)dπ(ω)

with

KM(x, x′) =
1

M

M∑
i=1

ψ(x, ωi )ψ(x′, ωi ) ?

Negative result (Avron et al., 2016): For all shift-invariant kernels, the
integral representation from Bochner’s theorem has infinite variation
(when written as the integral over the unit cube)

Our contribution: For a class of shift-invariant kernels (including
Gaussian kernel), even though the integrand has infinite variation, the
singularity is mild, so the approximation error can still be well controlled:

|KM(x, x′)− K (x, x′)| . 1

M
(up to log factors)
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1 Introduction

2 Approximate Kernel Functions with QMC
Shift-Invariant Kernels
Non-Shift Invariant Kernels

3 Application in Kernel Ridge Regression
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Methodology for shift-invariant kernel

Assume µ from Bochner’s theorem is a probability measure with
independent components, with the i-th component having c.d.f. Φi (t)

Φ(t) := (Φ1(t), . . . ,Φd(t))>; Φ−1(t) := (Φ−1
1 (t), . . . ,Φ−1

d (t))>

By a change of variable,

K (x, x′) = h(x− x′) =∫
[0,1]d+1

2 cos
(
x>Φ−1(t) + 2πb

)
cos
(
(x′)>Φ−1(t) + 2πb

)
dbdt.

ω := (t, b) ∼ Unif[0, 1]d+1; ψ(x, ω) :=
√

2 cos
(
x>Φ−1(t) + 2πb

)
.

Our QMC features: Set ω1, . . . , ωM as the first M points in the Halton
sequence (instead of M i.i.d. points), and define the approximate kernel
KM(·, ·) := 1

M

∑M
i=1 ψ(x, ωi )ψ(x′, ωi ) as in classical random features.
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Mild singularity condition for 1/M error bound

QMC Condition 1

K (·, ·) is shift invariant with marginal c.d.f. Φi (i = 1, . . . , d) satisfying
d
dt Φ−1

i (t) ≤ Ci
min(t,1−t) for some constant Ci > 0 and all t ∈ (0, 1). X is

compact.

Gaussian kernel and Cauchy kernel over a compact domain satisfy
QMC Condition 1.

They are examples of universal kernels (Micchelli et al., 2006): the
associated function class (RKHS) can approximate any continuous
function arbitrarily well

Particularly useful in ML applications such as kernel ridge regression
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QMC: Improved approximation error

Theorem (Approximation error of QMC features)

Suppose K (·, ·) satisfies QMC Condition 1. Then there exists a constant
C > 0 (depending on X ⊂ Rd and K ) such that for any x , x ′ ∈ X and
M ≥ 2,

|KM(x, x′)− K (x, x′)| ≤ C (logM)2d+1

M
.

Proof idea:

1 Singularity near the boundary is mild when QMC Condition 1 holds

2 Halton sequence avoids the boundary of the unit cube (Owen, 2006)
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Non-shift invariant kernel

Bochner’s theorem no longer applicable.

Whether K (·, ·) has an integral representation

K (x, x′) =

∫
[0,1]p

ψ(x, ω)ψ(x′, ω)dπ(ω), (1)

needs to be considered on a case-by-case basis.

QMC Condition 2: If (1) exists, and ∀ x, x′ ∈ X , g(ω) = ψ(x, ω)ψ(x′, ω)
is of bounded variation VHK(g) ≤ C0, then QMC features yields

|KM(x, x′)− K (x, x′)| ≤ C0CH(p) · (logM)p

M
.
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Examples

Non-shift invariant kernels to which QMC applies:

1 Min kernel: K (u, v) = min{u, v} =
∫ 1

0 1t<u1t<vdt

2 Brownian bridge:
K (u, v) = min{u, v} − uv =

∫ 1
0 (1t<u − u)(1t<v − v)dt

3 Iterative kernel (Courant & Hilbert, 1953): K1(·, ·): a ‘smooth’
kernel; µ: positive integrable function. Iterative kernel:

K2(x, z) :=

∫
[0,1]d

K1(x, t)K1(z, t)µ(t)dt.

4 Natural cubic spline: K (u, v) =
∫ 1

0 (u ∧ t − ut)(v ∧ t − vt)dt

5 Product kernels
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Exact kernel ridge regression (KRR)

space complexity O(n2); time complexity O(n3)

RF-KRR & QMCF-KRR

space complexity O(nM); time complexity O(nM2 + M3)

Question: How large should M be?

Short answer: Our QMC features require a smaller M.

To achieve the same error rate as the exact KRR:

1 RF-KRR: M � n
2r

2r+1 (up to log factors)

2 QMCF-KRR: M � n
1

2r+1 (up to log factors)

(r ∈ [1/2, 1]: smoothness parameter of regression function)

Substantial improvement in smoother cases!
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Notations

H: Reproducing kernel Hilbert space (space of function consisting of
span{K (x, ·) : x ∈ X} and their limits)

Integral operator L : L2(PX)→ L2(PX):

Lf (x) := EX∼PX
[K (X, x)f (X)] .

Fact: ran L1/2 = H

Assume: The true regression function is in ran Lr for some r ∈ [1/2, 1].

(r : smoothness parameter)
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Theorem: QMCF-KRR error rate

Assume

1 QMC condition holds: supx,x′∈X |K (x, x′)− KM(x, x′)| ≤ C · loga M
M

2 Continuity conditions on the kernel

3 Standard Bernstein condition on the response Y

4 True regression fH ∈ arg minf ∈H E(f ) is in ran Lr , r ∈ [1/2, 1]

Let λ = C̃n−
1

2r+1 ∈ (0, e−1]. Then M = loga(1/λ)
λ = n

1
2r+1 loga(n

1
2r+1 /C̃ )/C̃

is enough to guarantee that, for any δ ∈ (0, 1], there exists n0, such that
when n ≥ n0, with probability at least 1− δ, the QMCF-KRR excess risk

E(f̂λ,M)− inf
f ∈H
E(f ) ≤ C1n

− 2r
2r+1 log2 6

δ
.

n−
2r

2r+1 : same error rate as in exact KRR (Caponnetto & De Vito, 2007)
and RF-KRR (Rudi & Rosasco, 2017)
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Summary of the paper

Goal: Faster approximate computation of kernel methods using
quasi-Monte Carlo methods.

Main Methodology: Replace the Monte Carlo sequence in the
random features approach (Rahimi & Recht, 2007) by quasi-Monte
Carlo sequence.

Theoretical Guarantee: With M features, the approximation error
can be improved from OP(1/

√
M) to O(1/M) (up to logarithmic

factors), for a class of kernels including Gaussian kernels.
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