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Introduction: kernel method

o Kernel method: mathematically well-founded, practically powerful
modeling framework

@ Remarkably effective in small and medium size problems with certain
optimal statistical results (Kimeldorf & Wahba, 1970; Scholkopf et
al., 2001; Caponnetto & De Vito, 2007)

@ Infeasible for large scale problems due to its time and memory
requirements
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Introduction

e Example: Kernel ridge regression (KRR)
e space complexity O(n?); time complexity O(n?)
@ Various approximation techniques: Nystrom (Williams & Seeger,
2000); Smola (2000); incomplete Cholesky decomposition (Bach &
Jordan, 2003); random features (Rahimi & Recht, 2007) ...

e Focus on: random features (Rahimi & Recht, 2007)
e based on Monte Carlo method
o KRR: space complexity O(nM); time complexity O(nM? + M?) with
small M < n
e well-understood theoretically (Sutherland & Schneider, 2015;
Sriperumbudur & Szabo, 2015; Choromanski et al., 2018; Jacot et al.,
2020; Lanthaler & Nelsen, 2023)

Goal: Further improve random features with Quasi-Monte Carlo method
in place of Monte Carlo method
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Random features: Preliminary

Many kernels on X C RY have an integral representation:

Kx.x) = [ lxw)ulxw)dn(e).

7. probability measure over some space €2
¥(-,-): a function on X x Q.

Bochner's theorem: For any shift-invariant kernel K(x,x") = h(x —x’), 3
finite non-negative symmetric Borel measure i s.t.

h(X _ x/) — / efi(xfx/)de'u(w)
Rd

= /Rd /027r % cos (xTw + b) cos ((x’)Tw + b) dbdpu(w).
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Some popular shift-invariant kernels

h(x B x/) _ / efi(xfx/)delu(w)
Rd
Q Gaussian kernel e l7C12/2: 1~ N(0, 5214).

@ Laplacian kernel e~ n(x=x)ll; 1 has Lebesgue density
e, W (Cauchy distribution).

Allwlla

© Cauchy kernel H, 1 m 1 has Lebesgue density %e‘

(Laplace distribution).
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Random features

Given the kernel function has integral representation

m&mzéwMMMAmmw»

K(x,x) can be approximated by

M
Ko x) = 103 00 i) (1),
i=1

with w1, ...,wpy i.i.d. from 7 (Monte Carlo method)

Computation: Reduce KRR complexity to that of usual ridge regression
(as Ky is an inner product on RM)

Approximation error: |K(x,x') — Ky(x,x")| = Op(1/vV'M)
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RF approximation error: |K(x,x') — Ky(x,x')| = Op(1/vVM)

Limitation:
@ non-deterministic error bound

1
@ errorr — lowl
error rate mdecaysso y

Goal: Replace MC sequence wi,wo, ... with QMC sequence to yield
@ deterministic error bound

e error rate ; (up to log factors)
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Quasi-Monte Carlo (QMC) method

@ QMC: Powerful tool in numerical integration

e Focus: Approximate f[o 1 f(x)dx with 4 Z,’\il f(x;) for some

well-chosen deterministic sequence {x;}, that are spread out more

‘uniformly’ in some sense.

Halton Sequence

Random Points (iid)

Figure: Left: the first 25 points of the two-dimensional Halton sequence. Right:
25 i.i.d. random points from Unif[0, 1]2.
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QMC targets functions with finite variation:

Koksma-Hlawka inequality (Hlawka, 1961)

Suppose f : [0,1]¢ — R has finite variation in the sense of Hardy and
Krause Vix(f). Then for any x1,...,xp € [0,1]9, we have

‘/[0 1]¢ e = _Z F(xi)| < Vi(AD" ({xi} ),

where D*({x;}M,) is the star discrepancy® of the point set {x;}M .

VO](J';) _ {ie{1,..., M} x; €}

SD*({xf}il\il) = SUP¢e(o,1)d , where

Ji = 1[0,t1) x [0, £2) X --- x [0, ) and Vol(J) := [I%, t; is the volume.

Halton sequence (a QMC sequence): D*({h;}M,) < Cy(d)(log M) /M
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Question: Can we directly apply QMC inequality when approximating

K(x,x’)—/Qw(x,w)@b(x’,w)dﬂ(w)
with

M
Ku(x,x') = Z P(x,w) (X wi) 7
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Question: Can we directly apply QMC inequality when approximating

K(x,x’)—/Qw(x,w)@b(x’,w)dﬂ(w)
with

Ku(x,x') = Mzwxw, X wi) ?

Negative result (Avron et al., 2016): For all shift-invariant kernels, the
integral representation from Bochner’s theorem has infinite variation
(when written as the integral over the unit cube)
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Question: Can we directly apply QMC inequality when approximating

K(x,x’)—/Qw(x,w)@b(x’,w)dﬂ(w)
with

Ku(x,x') = Mzwxw, X wi) ?

Negative result (Avron et al., 2016): For all shift-invariant kernels, the
integral representation from Bochner’s theorem has infinite variation
(when written as the integral over the unit cube)

Our contribution: For a class of shift-invariant kernels (including
Gaussian kernel), even though the integrand has infinite variation, the
singularity is mild, so the approximation error can still be well controlled:

’KM(X’X/) - K(X,X,)| S

1
Su (up to log factors)
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© Introduction
© Approximate Kernel Functions with QMC

@ Shift-Invariant Kernels

© Application in Kernel Ridge Regression
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Methodology for shift-invariant kernel

Assume p from Bochner's theorem is a probability measure with
independent components, with the i-th component having c.d.f. ®;(t)

O(t) := (P1(t),...,dq(t))T; d71(t) := ((Dl_l(t), cey ¢>;1(t))T
By a change of variable,
K(x,x') = h(x — x') =

/ 2cos (x " ®71(t) + 27mb) cos ((x') "D T(t) + 2mb)dbdt.
[0,1]d+1

w = (t, b) ~ Unif[0, 1]9%1; y(x,w) := v2cos (x " ®~1(t) + 27b).

Our QMC features: Set wq,...,wp as the first M points in the Halton
sequence (instead of M i.i.d. points), and define the approximate kernel
Km(s) = 4 Z,Ail P(x,w;)(x',w;) as in classical random features.

Zhen Huang QMC Features ICML 2024 12 /22



Mild singularity condition for 1/M error bound

QMC Condition 1

K(-,-) is shift invariant with marginal c.d.f. ®; (i =1,...,d) satisfying
%Cbi’l(t) < m for some constant C; > 0 and all t € (0,1). X is
compact.

@ Gaussian kernel and Cauchy kernel over a compact domain satisfy
QMC Condition 1.
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Mild singularity condition for 1/M error bound

QMC Condition 1

K(-,-) is shift invariant with marginal c.d.f. ®; (i =1,...,d) satisfying
%Cbi’l(t) < m for some constant C; > 0 and all t € (0,1). X is

compact.

@ Gaussian kernel and Cauchy kernel over a compact domain satisfy
QMC Condition 1.

@ They are examples of universal kernels (Micchelli et al., 2006): the
associated function class (RKHS) can approximate any continuous
function arbitrarily well

@ Particularly useful in ML applications such as kernel ridge regression
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QMC: Improved approximation error

Theorem (Approximation error of QMC features)

Suppose K(-,-) satisfies QMC Condition 1. Then there exists a constant

C > 0 (depending on X € R? and K) such that for any x, x’ € X’ and
M > 2,

log M)2d+1
[Kn(x,X') — K(x,x)| < C(OgM).
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QMC: Improved approximation error

Theorem (Approximation error of QMC features)

Suppose K(-,-) satisfies QMC Condition 1. Then there exists a constant

C > 0 (depending on X € R? and K) such that for any x, x’ € X’ and
M > 2,

| M)2d+1
[Kn(x,X') — K(x,x)| < C(OgM).

Proof idea:

@ Singularity near the boundary is mild when QMC Condition 1 holds
@ Halton sequence avoids the boundary of the unit cube (Owen, 2006)
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© Introduction

© Approximate Kernel Functions with QMC

@ Non-Shift Invariant Kernels

© Application in Kernel Ridge Regression
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Non-shift invariant kernel

Bochner's theorem no longer applicable.

Whether K(-,-) has an integral representation

K(x,x) = P(x, )P (x, w)dm(w), (1)

[0,1]

needs to be considered on a case-by-case basis.
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Non-shift invariant kernel

Bochner's theorem no longer applicable.

Whether K(-,-) has an integral representation

K(x,x') = P(x,w)p(x',w)dmr(w), (1)
[0,1]7
needs to be considered on a case-by-case basis.

QMC Condition 2: If (1) exists, and V x,x’ € X, g(w) = ¢(x,w)y(x',w)
is of bounded variation Vi (g) < Co, then QMC features yields

(log /V/)”'

’KM(X’X/) - K(X,X/)| < C()CH(P) : M
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Examples

Non-shift invariant kernels to which QMC applies:

@ Min kernel: K(u,v) = min{u,v} = fol licylic,dt

© Brownian bridge:
K(u,v) = min{u,v} —uv = f01(1t<u —u)(licy — v)dt

@ Iterative kernel (Courant & Hilbert, 1953): Ki(-,-): a ‘smooth’
kernel; u: positive integrable function. lterative kernel:

Ka(x,2z) := / Ki(x,t)Ki(z, t)u(t)dt.
[0,1]¢

© Natural cubic spline: K(u,v) = fol(u At —ut)(vAt—vt)dt
© Product kernels
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© Application in Kernel Ridge Regression
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o Exact kernel ridge regression (KRR)
e space complexity O(n?); time complexity O(n?)
o RF-KRR & QMCF-KRR
e space complexity O(nM); time complexity O(nM? + M?3)

Question: How large should M be?
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o Exact kernel ridge regression (KRR)
e space complexity O(n?); time complexity O(n?)
o RF-KRR & QMCF-KRR
e space complexity O(nM); time complexity O(nM? + M?3)

Question: How large should M be?
Short answer: Our QMC features require a smaller M.

To achieve the same error rate as the exact KRR:
@ RF-KRR: M = nz i (up to log factors)
@ QMCF-KRR: M =< nE (up to log factors)

(r € [1/2,1]: smoothness parameter of regression function)

Substantial improvement in smoother cases!
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Notations

H: Reproducing kernel Hilbert space (space of function consisting of
span{K(x,-) : x € X} and their limits)

Integral operator L : [?(Px) — L?(Px):

Lf(x) := Expy [K(X, x)f(X)].
Fact: ran[1/2 =}
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Notations

H: Reproducing kernel Hilbert space (space of function consisting of
span{K(x,-) : x € X} and their limits)

Integral operator L : [?(Px) — L?(Px):
Lf(x) := Expy [K(X, x)f(X)].
Fact: ran [1/2 =H

Assume: The true regression function is in ran L™ for some r € [1/2,1].

(r: smoothness parameter)
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Theorem: QMCF-KRR error rate

Assume
@ QMC condition holds: sup, yex [K(x,X") — Km(x,x')] < C - W
@ Continuity conditions on the kernel
© Standard Bernstein condition on the response Y
Q True regression fp € argmingcq E(f) isinranl’, r € [1/2,1]
Let A= Cn 241 € (0,e71]. Then M = w = nzi Ioga(nTIH/CN)/CN'
is enough to guarantee that, for any § € (0, 1], there exists ng, such that
when n > ng, with probability at least 1 — §, the QMCF-KRR excess risk

N r 6
E(huwm) — inf E(F) < G 771 log? <.

2r

n~2+1: same error rate as in exact KRR (Caponnetto & De Vito, 2007)
and RF-KRR (Rudi & Rosasco, 2017)
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Summary of the paper

o Goal: Faster approximate computation of kernel methods using
quasi-Monte Carlo methods.

@ Main Methodology: Replace the Monte Carlo sequence in the
random features approach (Rahimi & Recht, 2007) by quasi-Monte
Carlo sequence.

@ Theoretical Guarantee: With M features, the approximation error
can be improved from Op(1/v/M) to O(1/M) (up to logarithmic
factors), for a class of kernels including Gaussian kernels.
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