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Core Issue: Complex Logical Reasoning Ability
Logical Reasoning of Multimodal Large Models

 Mathematical reasoning is one of the core aspects for evaluating logical reasoning ability of large models. 

 Our task: inputting a visual image and answering the corresponding graph theory questions. 

 The graph theory questions require MLMs to: 1) Accurately understand the graph structure. 2) Utilize knowledge 
to perform multi-step reasoning in the visual graph.

 Graph theory problems are involved in various agent scenarios:

        1) AI for Science, e.g., Molecular Structure

        2) Visual language navigation, 

        3) Robot planning and control

 Most agent scenarios focus on Web UI and OS environments.

 VisionGraph provides a new testboard for assessing multimodal agent.
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VisionGraph: Introduction
 Propose a benchmark set (6,000): covering 8 types of graph theory 

problems and 3 levels of difficulty.

 Evaluate spatial understanding and reasoning ability (2+1 questions):

 Node Recognition: How many nodes are shown in the graph?

 Edge Recognition: List all edges as triples in the undirected 
and weighted graph.

 Eight Specific Graph Theory problems

 Perception-Enhanced Data: 200k edge-relevant VQA



Comprehensive Evaluation

 Close: GPT-4V, Gemini, Qwen-plus/max

 Open: MiniGPT-4, InstructBLIP, LLaVA

Understanding of Graph Structures

 Closed-source GPT-4V outperforms Gemini.

 Open-source multimodal large models have very 
poor zero-shot spatial understanding capability.

 High error rates and error propagation affect 
reasoning ability.

Impact of Supervised Fine-tuning

 Using 200K edge VQA data for enhancement, 
edge recognition reduces error rates, especially for 
Cycle and Connectivity.

 The improved accuracy of graph problem shows 
that improving spatial reasoning requires more 
underlying perception capabilities.
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VisionGraph: Improving the spatial reasoning of MLMs
Multi-Step Graph Reasoning – Multimodal Agents
 Propose DPR to enhance graph structure perception and 

multistep reasoning.
 GPT-4V+DPR can be considered as a multimodal agent, 

integrating complex task decomposition, small model 
enhancement, code generation, and tool invocation.

1) Using graph understanding-enhanced Llava-7b to generate 
graph explanations, inputting them into GPT-4V to enhance 
graph structure understanding.
2) Generate graph representation: adjacency matrices.
3) Select specific algorithms and generate relevant codes.
4) Invoke tools to execute the produced codes.

Description-Programming-Reasoning (DPR)



Multistep Graph Reasoning Capability
 The interleaved logical reasoning chain of natural language and code enhances the complex problem-solving abilities.
 GPT-4V excels in selecting and understanding algorithms and DPR can enhance strengths and mitigate weaknesses. 
 The DPR practice results on open-source models are also promising.
 After invoking the Python Tool, GPT-4V's performance is further improved.
 However, the limited visual perception capability of LMM leads to hallucinations (nonexistent paths), ultimately 

resulting in poor performance on complex problems, such as the shortest path.
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Take Away

The intertwined thinking chain of natural language and code facilitates 
tool invocation, maintains rigorous reasoning, and is easy to trace.
Breakthroughs in spatial perception (Feifei Li) will significantly enhance 

the spatial planning capabilities of visual-language large models, 
benefiting robotic planning and vision-language navigation.
Combining advanced visual-language descriptions with fundamental 

visual perception may help improve the overall capabilities of multimodal 
large language models to solve complex visual reasoning problems.
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