

### Exploration-Driven Policy Optimization in RLHF: Theoretical Insights on Efficient Data Utilization



Yihan Du UIUC



Anna Winnick UIUC



Gal Dalal Nvidia



Shie Mannor Technion/Nvidia



R. Srikant UIUC

Speaker: Yihan Du ICML 2024

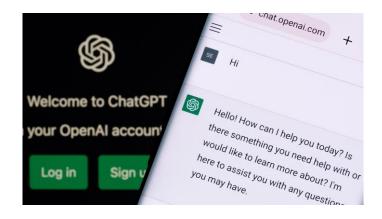
# Motivation

- Reinforcement Learning from Human Feedback (RLHF):
  - · Goals are complex and hard to specify
    - E.g., let a robot cook
  - Misalignment with human's objective
    - E.g., ChatGPT
- Empirical success of RLHF:
  - Data efficiency: "Using feedback on <1% of the agent's interactions with the environment" [Christiano et al., 2017]





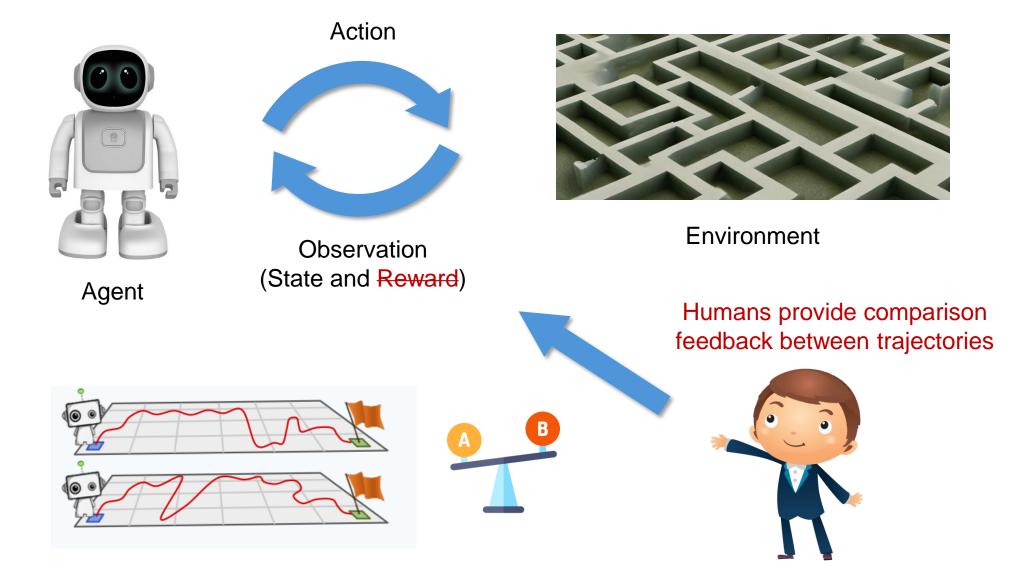




Christiano, Paul F., Jan Leike, Tom Brown, Miljan Martic, Shane Legg, Dario Amodei. Deep reinforcement learning from human preferences. NeurIPS, 2017 2

## Formulation

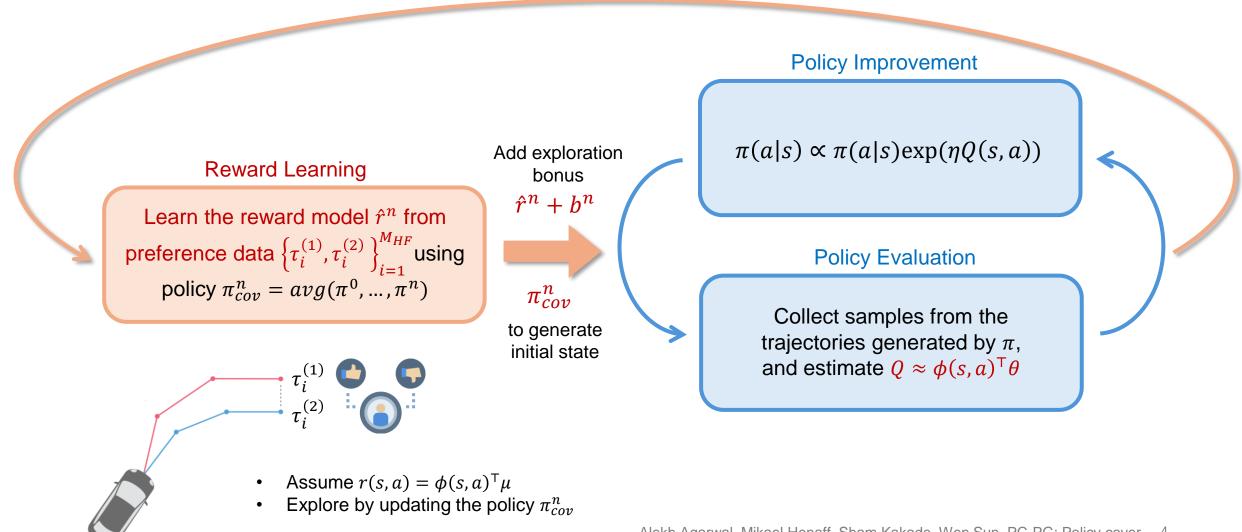




#### Exploration-Driven RLHF Algorithm: PG-RLHF



 $\pi^{n+1}$  [Agarwal et al., 2020]



Alekh Agarwal, Mikael Henaff, Sham Kakade, Wen Sun. PC-PG: Policy cover 4 directed exploration for provable policy gradient learning. NeurIPS, 2020.



**Theorem 1.** With probability  $1 - \delta$ , the output policy  $\pi^{out}$  of algorithm PG-RLHF satisfies

$$V^{\pi^*}(s_0) - V^{\pi^{out}}(s_0) \le \tilde{O}\left(\sqrt{\varepsilon_{bias}} + \frac{1}{\sqrt{T}} + \frac{\sqrt{N}}{M_{SGD}^{\frac{1}{4}}} + \frac{\sqrt{N}}{M_{HF}^{\frac{1}{4}}} + \frac{1}{N}\right)$$

- $\varepsilon_{bias}$ : Q-value function approximation error
- *T*: # iterations of policy optimization
- $M_{SGD}$ : # iterations in SGD for policy evaluation
- $M_{HF}$ : # human trajectory comparisons for reward learning
- *N*: # outer loop iterations



- When  $T, M_{SGD}, M_{HF}, N$  increase,  $V^{\pi^*}(s_0) V^{\pi^{out}}(s_0)$  decreases to zero up to  $\varepsilon_{bias}$  $M_{SGD}$  and  $M_{HF}$  have the same convergence rate



|                | PG-RLHF (ours)                        | PC-PG [Agarwal et al., 2020] for<br>Standard RL |
|----------------|---------------------------------------|-------------------------------------------------|
| # Samples      | $\tilde{O}(NK + NTM_{SGD} + NM_{HF})$ | $\tilde{O}(NK + NTM_{SGD})$                     |
| # True rewards | 0                                     | $\tilde{O}(NK + NTM_{SGD})$                     |
| # Queries      | $O(NM_{HF})$                          | 0                                               |



#### **Remarks:**

- $\tilde{O}(M_{SGD}) \approx \tilde{O}(M_{HF})$  due to the same convergence rate
- The ratio of query complexity over the overall sample complexity is about  $\frac{NM_{HF}}{NTM_{SGD}} \approx \frac{1}{T}$

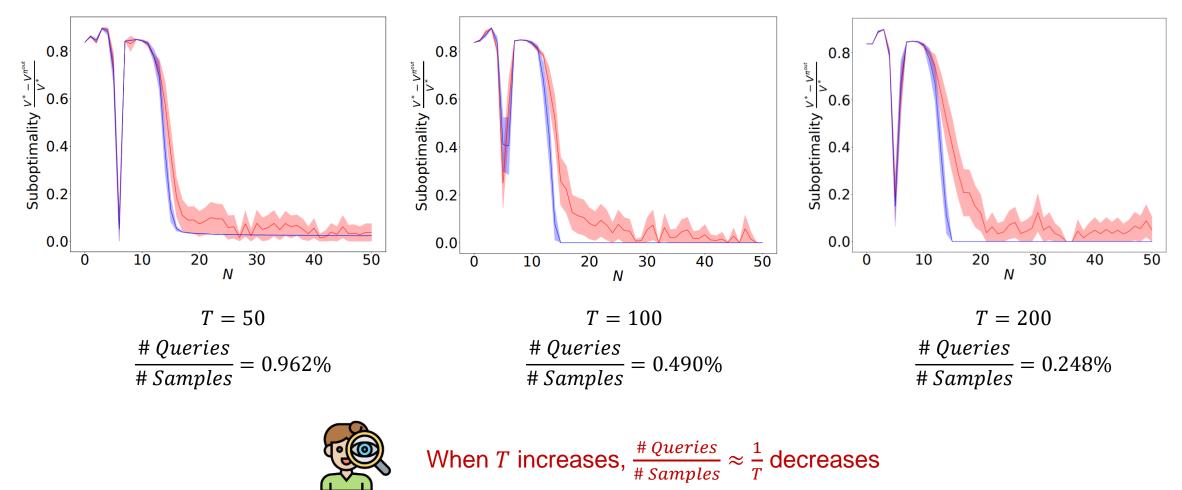
Alekh Agarwal, Mikael Henaff, Sham Kakade, Wen Sun. PC-PG: Policy cover directed exploration for provable policy gradient learning. NeurIPS, 2020.

## Experiments



•  $N = 50, K = 2500, M_{SGD} = 2500, M_{HF} = 2500, S = 22, A = 5, \gamma = 0.9, \delta = 0.005$ 

PG-RLHF (ours)PC-PG [Agarwal et al., 2020]







A theoretical explanation for the data efficiency of RLHF:

• The reward model is first learned, and then fixed during policy optimization

• 
$$\frac{\# Queries}{\# Total samples} \approx \frac{M_{HF}}{TM_{SGD}} \approx \frac{1}{T}$$



# Thank You