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» Reinforcement Learning from Human
Feedback (RLHF):

» Goals are complex and hard to specify
 E.g., let arobot cook

« Misalignment with human’s objective
 E.g., ChatGPT

« Empirical success of RLHF:

« Data efficiency: “Using feedback on <1% of
the agent’s interactions with the environment”
[Christiano et al., 2017]
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Christiano, Paul F., Jan Leike, Tom Brown, Miljan Martic, Shane Legg, Dario
Amodei. Deep reinforcement learning from human preferences. NeurlPS, 2017 2
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Exploration-Driven RLHF Algorithm: PG-RLHF a ICML <
G Maching Loorning - DV%A
™ t1 [Agarwal et al., 2020]
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Assume r(s,a) = ¢(s,a) " u
» Explore by updating the policy 2,

Alekh Agarwal, Mikael Henaff, Sham Kakade, Wen Sun. PC-PG: Policy cover 4
directed exploration for provable policy gradient learning. NeurlPS, 2020.
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Theorem 1. With probability 1 — &, the output policy m°%t of algorithm PG-RLHF satisfies
out 1 VN VN 1

V™ (s9) = V™ (s9) < 0 Vebias + =t Tt Ty
ME . M}
SGD HF

Epias. Q-value function approximation error

T: # iterations of policy optimization

Mg p: # iterations in SGD for policy evaluation

Myr: # human trajectory comparisons for reward learning
N: # outer loop iterations
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b O « When T, Mszp, My, N increase, VT (so) — V™ (s,) decreases to zero up to &4
 M..p and My have the same convergence rate



Comparison between PG-RLHF and PC-PG
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PC-PG [Agarwal et al., 2020] for

PG-RLHF (ours) Standard RL

# Samples O(NK + NTMgcp + NMyr) O(NK + NTMgp)
# True rewards 0 O(NK + NTMsgp)
# Queries O(NMyp) 0

;@-_ Remarks
W, « 0(Mscp) ~ O(Myp) due to the same convergence rate
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« The ratio of query complexity over the overall sample complexity is about

Alekh Agarwal, Mikael Henaff, Sham Kakade, Wen Sun. PC-PG: Policy cover
directed exploration for provable policy gradient learning. NeurlPS, 2020. 6
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Suboptimality

Experiments

N =50, K = 2500, Mszp = 2500, My = 2500,
S=122 A=5y=09 §=0.005
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PC-PG [Agarwal et al., 2020]

PG-RLHF (ours)
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Conclusion
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A theoretical explanation for the data efficiency of RLHF:

* The reward model is first learned, and then fixed during policy optimization

# Queries — Mygr

1
# Total samples - TMsgp T
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