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Generalization of Embodied Agents

An intricate challenge is generalizing across configurations like transformations, morphologies, 
and tasks, which are interlinked and complicate the learning process. 
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Spatial Intelligent

Geometric Structure and Systems
[Joshi et.al. Geometric Graph Neural Networks. NeurIPS 2022]

The examples in the figure correspond to Aspirin (acetylsalicylic 
acid) molecules:(a) topology graph and (b) geometric graph.

3D Geometric Graph! Symmetry!
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Geometric Deep Learning
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The Symmetry in 3D Multi-Entity Physical Environments
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In particular, multi-entity systems, which include agents, objects, present considerable 
challenges compared to single-entity scenarios, partly due to exponential expansion of 
global transformations as the number of entities increases. 
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Subequivariant Hierarchical Neural Networks (SHNN)
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The right side illustrates our key innovation: the dynamic task assignment leveraging 
bipartite graph matching, and the construction of an E𝒈(3)-equivariant local reference 
frame for each entity to address local transformations.
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Multi-entity Benchmark (MEBEN)

Team Reach (left) where agents cooperate to collectively reach all fixed balls, and Team 
Sumo (right) where agents engage in both cooperation and competition to push opponents 
away from the fixed ball. 

Team Sumo: cooperation & competitionTeam Reach: cooperation
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Evaluations in Diverse Environments

Team Reach
8



Evaluations in Diverse Environments

Team Sumo
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Extended Evaluations on Transformer
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Ablations on Assignment
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Ablations on Equivariance
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Analyses of Morphology-shared Policy
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Importance of Local Symmetry
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Model Comparison: Parameters and Training Time
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Take-away

Ø To effectively optimize the policy in 3D multi-entity physical environments, we propose 
SHNN, a novel framework that offers a superior plug-in alternative to hand-crafted LRFs. It 
decouples local transformations from the overall structure and compresses the state 
space by leveraging local physical geometric symmetry, particularly in gravity-affected 
environments. 

Ø We introduce MEBEN, a collection of subequivariant morphology-based MARL 
environments, designed for in-depth exploration of multi-entity interactions within physical 
geometric symmetry constraints. These environments, including a diverse range of inter-
entity transformations, facilitate both cooperative and competitive dynamics.

Ø We demonstrate the effectiveness of SHNN in the proposed 3D multi-entity physical 
environments, including Team Reach and Team Sumo. Our extensive ablations and 
comparative analyses also reveal the efficacy of the proposed ideas.
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Thanks!
For more information, welcome to visit our website:

https://alpc91.github.io/SMERL/
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