Behavior Generation with Latent Actions

VQ-BeT: Action multi-modality through tokenization

Seungjae Lee, Yibin Wang, Haritheja Etukuru, H. Jin Kim, Nur Muhammad Mahi Shafiullah*, Lerrel Pinto*

https://silee.cc/vq-bet

Difficulties of adapting BC to real world

What are the big challenges?

- Expert demos are expensive and sometimes come without a reward label.
- Modeling behavior from demonstrations can have multiple modes.
- Environments are not Markovian.

Consider opening this door

Consider opening this door

Consider opening this door

Multi-modality: Pfor large action dataset

How do language models do it?

Predicting tokenized language, one token at a time

How do language models do it?

Predicting tokenized language, one token at a time

Learning the alphabet of actions

Action dataset

This is continuous

⇒ hard to learn multi-modal distributions over

Learning the alphabet of actions

Learning the alphabet of actions

Modeling behavior like GPT

Step 1: Tokenizing actions

Modeling behavior like GPT

Step 1: Tokenizing actions

Modeling behavior like GPT

Step 2: Predicting actions using a transformer decoder

VQ-BeT in Various Decision-making Problems

Multimodal Behaviors of VQ-BeT

Multimodal Behaviors of VQ-BeT

Outperforming Diffusion policy

Fast and Light-weighted Model

14-15% of Diffusion Policy!

38MB including Image Encoder (HuggingFace LeRobot Implementation)

	On GPU (A6000)	On CPU
Inference time (50 envs batch)	12ms	43ms
(JO CITVS DALCIT)	for 5-step action chunk	for 5-step action chunk
Inference time	2.4ms	8ms
(per single action)	for 5-step action chunk	for single-step

Real-world Experiments

Method	Open Toaster	Close Toaster	Close Fridge	Can to Toaster	Can to Fridge	Total
VQ-BeT	8/10	10/10	10/10	10/10	9/10	47/50
DiffPol-T [†]	8/10	9/10	8/10	$\mathbf{10/10}$	$\mathbf{10/10}$	45/50
BC w/ Depth	0/10	7/10	$\mathbf{10/10}$	8/10	2/10	27/50
BC	0/10	8/10	7/10	9/10	5/10	29/50

Method	Can to Fridge → Close Fridge	Can to Toaster → Close Toaster	Close Fridge and Toaster	Total
VQ-BeT	6/10	8/10	5/10	19/30
DiffPol-T [†]	4/10	1/10	6/10	11/30
BC w/ Depth	2/10	0/10	2/10	4/30
BC	2/10	1/10	4/10	7/30

Real-world Experiments

Method	Open Toaster	Close Toaster	Close Fridge	Can to Toaster	Can to Fridge	Total
VQ-BeT	8/10	10/10	10/10	10/10	9/10	47/50
DiffPol-T [†]	8/10	9/10	8/10	10/10	10/10	45/50
BC w/ Depth	0/10	7/10	$\mathbf{10/10}$	8/10	2/10	27/50
BC	0/10	8/10	7/10	9/10	5/10	29/50

Method	Can to Fridge → Close Fridge	Can to Toaster → Close Toaster	Close Fridge and Toaster	Total
VQ-BeT	6/10	8/10	5/10	19/30
DiffPol-T [†]	4/10	1/10	6/10	11/30
BC w/ Depth	2/10	0/10	2/10	4/30
BC	2/10	1/10	4/10	7/30

Especially true for long horizon and low-data regime

Behavior Generation with Latent Actions

VQ-BeT: Action multi-modality through tokenization

Seungjae Lee, Yibin Wang, Haritheja Etukuru, H. Jin Kim, Nur Muhammad Mahi Shafiullah*, Lerrel Pinto*

https://sjlee.cc/vq-bet

