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Note to reader—
Howdy!! Nate here.
The original version of these slides contains videos, which don’t render on the PDF version ©

This version certainly suffices to convey the main ideas. But in order to get the full effect, | encourage you to download the slides
from the project page and look at those instead: https://nateqgillman.com/sc-sc.html
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Synthetic data is flooding the web, where it (unknowingly)
becomes training data...

Figure 2: Today’s large-scale image training datasets contain synthetic data from generative
models. Datasets such as LAION-5B [17], which is oft-used to train text-to-image models like
Stable Diffusion [2], contain synthetic images sampled from earlier generations of generative models.
Pictured here are representative samples from LAION-5B that include (clockwise from upper left
and highlighted in red) synthetic images from the generative models StyleGAN [1], AICAN [35],
Pix2Pix [36], DALL-E [37], and BigGAN [38]. We found these images using simple queries on
haveibeentrained.com. Generative models trained on the LAION-5B dataset are thus closing an

Sina Alemohammad et al.
https://arxiv.org/abs/2307.01850
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They can be helpful to learn discriminative models...
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... but “self-consuming generative models go MAD”’!!

Generationt = 1

Sina Alemohammad et al.

StyleGAN-2 re-trained from synthetic images sampled from
the previous generation model. https://arxiv.org/abs/2307.01850
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How to stop the MADness?

Generationt = 1

e e : : :
Mix in “sufficient” portion of real data during each generation.  WELL K0, | WOWLDAT SAY {4 A D COW..

(Alemohammad et al.; Bertrand et al.) ALTHOUGH FARMER BROWN DOES GET
ON MY NERVES ONCE IN A WHILE! "’

https://www.cartoonstock.com/cartoon

Can we somehow (auto-)correct the synthesized examples? PearchD-Ca 11607 18typessiore




We use auto-correct every day...
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Why self-correct? Our theoretical results...

Definition (Self-Correcting Self-Consuming Loop). The SCSC loop is the
Markovian process

Ty gk

0o = arg;}laX[Emrvﬁdata [log pe (z)]], 0y —— 0i11,

where m.,G, Is the self-correcting self-consuming weight update mapping.

Definition (Self-Correcting Self-Consuming Weight Update). The idealized
correction of strength « > 0 of distribution py is the following distribution:
_ po(x) + ype+ (2)

1+~ ’

Do () :

where py- denotes the optimal model attainable within the model class. The
weight update mapping with augmentation percentage \ > 0 and correction
strengthy > 0 is:

1,2 (0) = local argmax Bz ..., log po (2)]] + A4 55 log 2o (@)
VE

where pa.t. and - pg are empirical distributions of size n. and |\ - n|, resp.

Theorem (Stability of lterative Fine-Tuning with Correction). Suppose that
we have a sufficiently nice self-consuming loop weight update procedure
g — 01 — 05 — ... with:
1. Synthetic augmentation percentage A > 0, correction strength v > 0,
2. X and vy both satisfying A - C < 3+
Then with high likelihood, the self-consuming loop with self-correction strength
~ satisfies the following stability estimate for allt > 0:
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Why self-correct? Our theoretical results...

Corollary 4.5. Under the assumptions from Theorem 4.3,
iterative fine-tuning with any amount of correction outper-
forms iterative fine-tuning without correction—in the sense
that it is exponentially more stable, and it results in better

model weights.

Conjecture 4.7. In the case of iterative fine-tuning with
correction, we may relax how close the initial model param-
eters 0f need to be to the optimal model parameters 0%, as
well as choose a larger synthetic augmentation percentage
A, while still retaining the improved stability estimate (7).




We start from human motion synthesis

prompt: “a person raises right hand to face looks around and puts hand down back to side”




We start from human motion synthesis

Baseline Self-Consuming

prompt: “a person raises right hand to face looks around and puts hand down back to side”
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How? fixing motions using a physics simulator in “self-
correcting self-consuming loop”
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Self-correcting self-consuming does not go MAD

Correction function:

Tweak the generated joints
so they can be executed by a
simulated human

Self-Consuming _
With Self-Correction
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Generation

Baseline Self-Consuming

prompt: “a person raises right hand to face looks around and puts hand down back to side”
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Zooming into the physics correction function

e Frozen, pre;crained policy
7T(at; St, Qt+1)

e Goal: imitate the generated
motion sequence le:T

e Transition dynamics given by
physics simulator

Universal Humanoid Control, Luo et al (2021)




Zooming into the physics correction function

Before physics correction

Af hysi ;
(hand passes through arm) ter physics correction
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Follow-up questions ZEIEICI=IARIFELE:
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Iterative Fine-tuning with Self-Correction




Follow-up questions

2. “Vanilla” generative
modeling

How to make
general-purpose video
generative models better
understand physics?

OpenAl’s Sora

https://www.youtube.com/watch?v=IfbimB0 rKY&ab channel=Newsshooter



https://www.youtube.com/watch?v=lfbImB0_rKY&ab_channel=Newsshooter
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