Self-Correcting Self-Consuming Loops For Generative Model Training

Nate Gillman, Michael Freeman, Daksh Aggarwal, Chia-Hong Hsu, Calvin Luo, Yonglong Tian, Chen Sun

ICML 2024, Vienna

Note to reader—

Howdy!! Nate here.

The original version of these slides contains videos, which don't render on the PDF version ©

This version certainly suffices to convey the main ideas. But in order to get the full effect, I encourage you to download the slides from the project page and look at those instead: https://nategillman.com/sc-sc.html

NG

Synthetic data is flooding the web, where it (unknowingly) becomes training data...

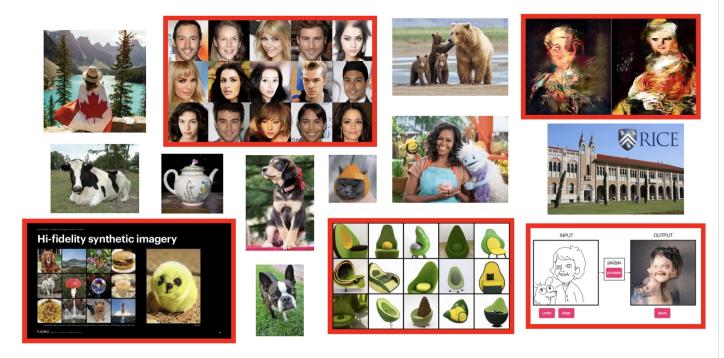
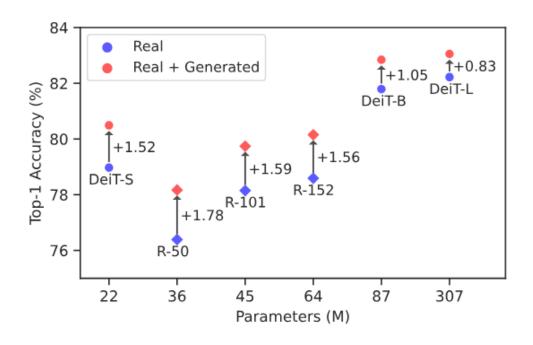
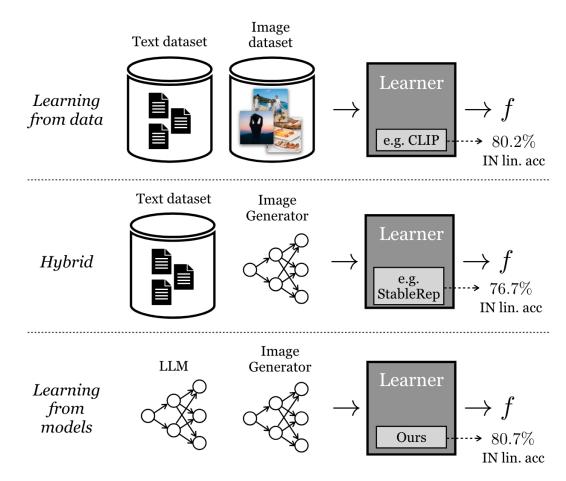


Figure 2: Today's large-scale image training datasets contain synthetic data from generative models. Datasets such as LAION-5B [17], which is oft-used to train text-to-image models like Stable Diffusion [2], contain synthetic images sampled from earlier generations of generative models. Pictured here are representative samples from LAION-5B that include (clockwise from upper left and highlighted in red) synthetic images from the generative models StyleGAN [1], AICAN [35], Pix2Pix [36], DALL-E [37], and BigGAN [38]. We found these images using simple queries on haveibeentrained.com. Generative models trained on the LAION-5B dataset are thus closing an

They can be helpful to learn discriminative models...



Azizi et al. https://arxiv.org/abs/2304.08466



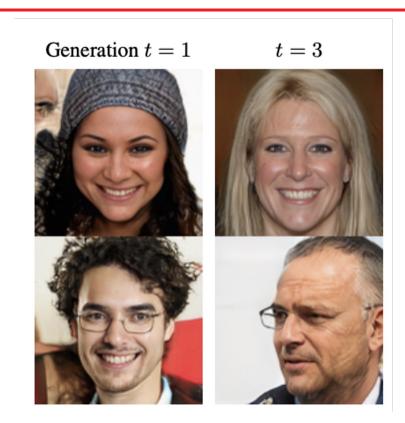
Tian and Fan et al. https://arxiv.org/abs/2312.17742

... but "self-consuming generative models go MAD"!!

Generation t = 1

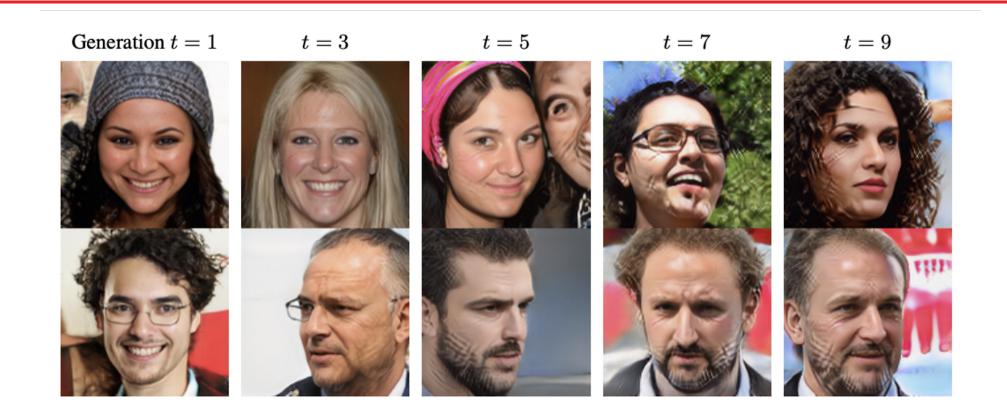
StyleGAN-2 re-trained from synthetic images sampled from the previous generation model.

... but "self-consuming generative models go MAD"!!



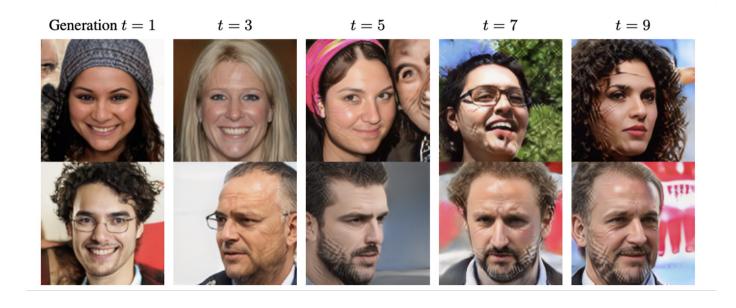
StyleGAN-2 re-trained from synthetic images sampled from the previous generation model.

... but "self-consuming generative models go MAD"!!



StyleGAN-2 re-trained from synthetic images sampled from the previous generation model.

How to stop the MADness?



Mix in "sufficient" portion of real data during each generation.

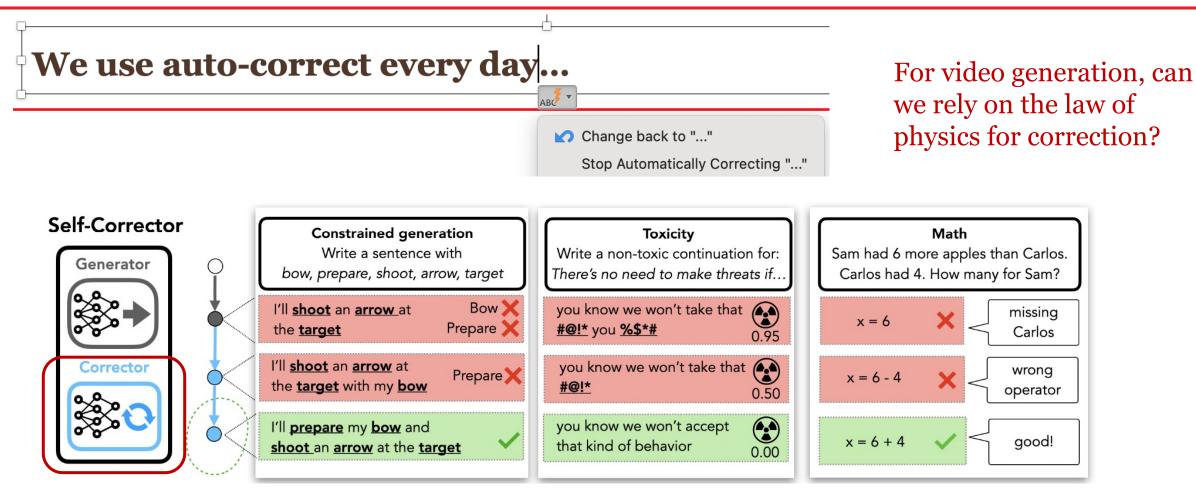
(Alemohammad et al.; Bertrand et al.)

Can we somehow (auto-)correct the synthesized examples?

"WELL, NO, I WOULDN'T SAY I'M A MAD COW...
ALTHOUGH FARMER BROWN DOES GET
ON MY NERVES ONCE IN A WHILE!"

https://www.cartoonstock.com/cartoon?searchID=CS116071&type=store

We use auto-correct every day...



Welleck and Lu et al., https://arxiv.org/abs/2211.00053

Why self-correct? Our theoretical results...

Definition (Self-Correcting Self-Consuming Loop). *The SCSC loop is the Markovian process*

$$heta_0 = rg \max_{ heta'} [\mathbb{E}_{x \sim \hat{p}_{ ext{data}}}[\log p_{ heta'}(x)]], \qquad \qquad heta_t \stackrel{\pi_{\gamma} \mathcal{G}_{\lambda}}{\longmapsto} heta_{t+1},$$

where $\pi_{\gamma}\mathcal{G}_{\lambda}$ is the self-correcting self-consuming weight update mapping.

Definition (Self-Correcting Self-Consuming Weight Update). *The* idealized correction of strength $\gamma \geq 0$ of distribution p_{θ} is the following distribution:

$$\pi_{\gamma} p_{\theta}(x) := \frac{p_{\theta}(x) + \gamma p_{\theta^{\star}}(x)}{1 + \gamma},$$

where p_{θ^*} denotes the optimal model attainable within the model class. The weight update mapping with augmentation percentage $\lambda \geq 0$ and correction strength $\gamma \geq 0$ is:

$$\pi_{\gamma}\mathcal{G}_{\lambda}(heta) := \operatorname{local argmax}_{ heta' \in \Theta} \Big[\mathbb{E}_{x \sim \hat{p}_{ ext{data}}}[\log p_{ heta'}(x)]] + \lambda \mathbb{E}_{x \sim \widehat{\pi_{\gamma} p_{ heta}}}[\log p_{ heta'}(x)] \Big],$$

where \hat{p}_{data} and $\widehat{\pi_{\gamma}p_{\theta}}$ are empirical distributions of size n and $|\lambda \cdot n|$, resp.

Theorem (Stability of Iterative Fine-Tuning with Correction). Suppose that we have a sufficiently nice self-consuming loop weight update procedure $\theta_0 \to \theta_1 \to \theta_2 \to \dots$ with:

- 1. Synthetic augmentation percentage $\lambda \geq 0$, correction strength $\gamma \geq 0$,
- 2. λ and γ both satisfying $\lambda \cdot C < \frac{1+\gamma}{2+\gamma}$.

Then with high likelihood, the self-consuming loop with self-correction strength γ satisfies the following stability estimate for all t>0:

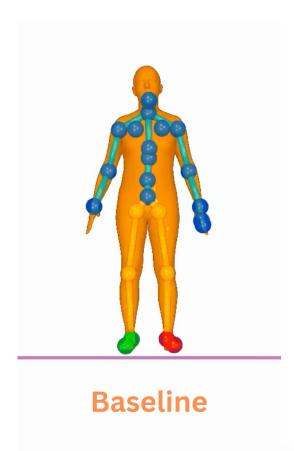
$$\|\theta_t - \theta^*\| \le c \cdot \sum_{i=0}^t \left(\frac{\rho}{1+\gamma}\right)^i + \left(\frac{\rho}{1+\gamma}\right)^t \|\theta_0 - \theta^*\|.$$

Why self-correct? Our theoretical results...

Corollary 4.5. Under the assumptions from Theorem 4.3, iterative fine-tuning with any amount of correction outperforms iterative fine-tuning without correction—in the sense that it is exponentially more stable, and it results in better model weights.

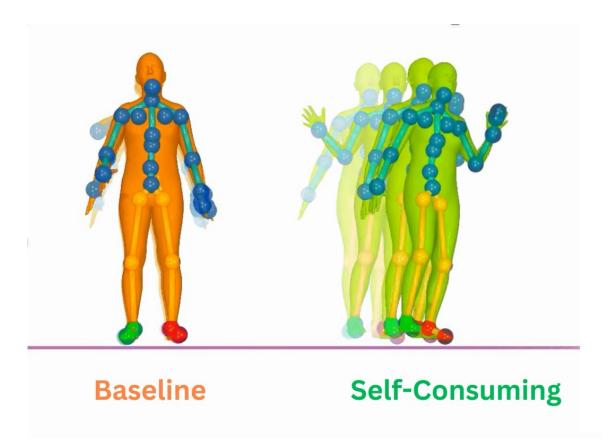
Conjecture 4.7. In the case of iterative fine-tuning with correction, we may relax how close the initial model parameters θ_0^n need to be to the optimal model parameters θ^* , as well as choose a larger synthetic augmentation percentage λ , while still retaining the improved stability estimate (7).

We start from human motion synthesis



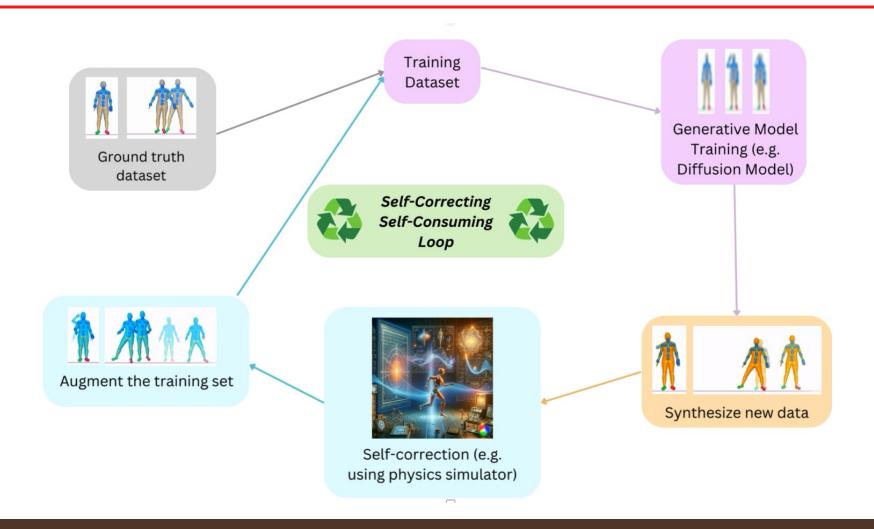
prompt: "a person raises right hand to face looks around and puts hand down back to side"

We start from human motion synthesis

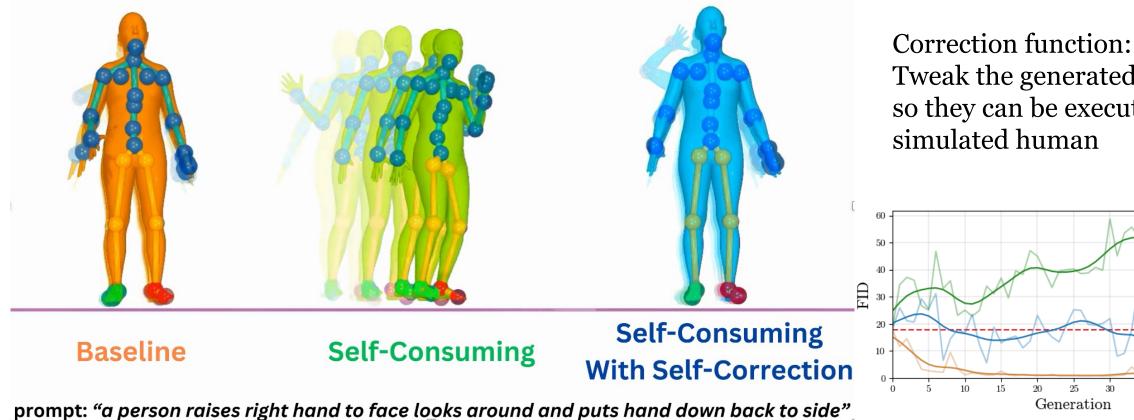


prompt: "a person raises right hand to face looks around and puts hand down back to side"

How? fixing motions using a *physics simulator* in "self-correcting self-consuming loop"



Self-correcting self-consuming does not go MAD



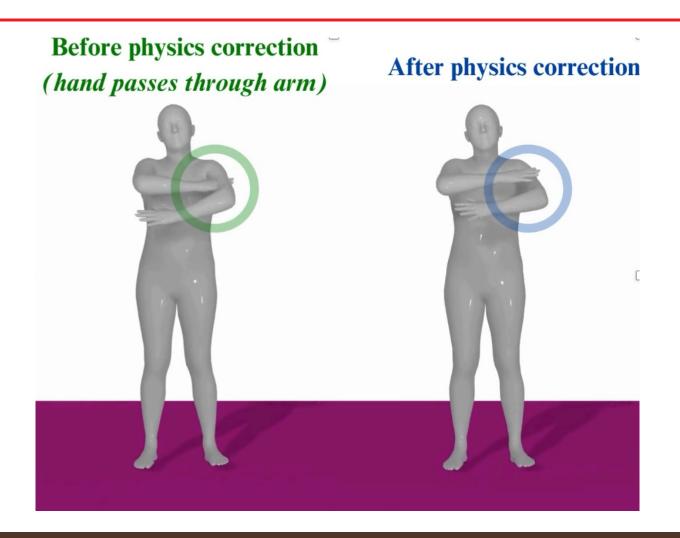
Tweak the generated joints so they can be executed by a

Zooming into the physics correction function

- $oldsymbol{ iny Frozen, pretrained policy} \pi(a_t; s_t, \hat{q}_{t+1})$
- ullet Goal: imitate the generated motion sequence $\hat{q}_{1:T}$
- Transition dynamics given by physics simulator

Universal Humanoid Control, Luo et al (2021)

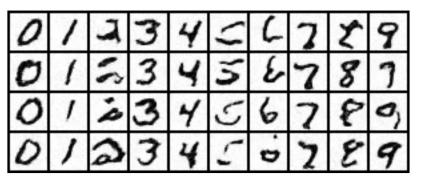
Zooming into the physics correction function



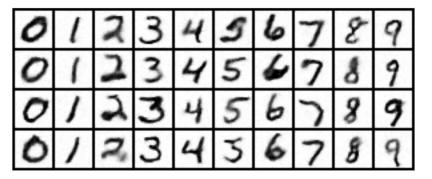
Follow-up questions

1. Self-consuming generative modeling

How to stabilize self-consuming generative models for other modalities (e.g. text, image)?



Iterative Fine-tuning



Iterative Fine-tuning with Self-Correction

Follow-up questions

2. "Vanilla" generative modeling

How to make general-purpose video generative models better understand physics?

OpenAl's Sora

https://www.youtube.com/watch?v=lfbImB0_rKY&ab_channel=Newsshooter

My awesome collaborators + advisors

