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Note to reader—

Howdy!! Nate here.

The original version of these slides contains videos, which don’t render on the PDF version J

This version certainly suffices to convey the main ideas. But in order to get the full effect, I encourage you to download the slides 
from the project page and look at those instead: https://nategillman.com/sc-sc.html

NG

https://nategillman.com/sc-sc.html
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Synthetic data is flooding the web, where it (unknowingly) 
becomes training data…

Sina Alemohammad et al.

https://arxiv.org/abs/2307.01850

https://arxiv.org/abs/2307.01850
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They can be helpful to learn discriminative models…

Tian and Fan et al. https://arxiv.org/abs/2312.17742

Azizi et al. https://arxiv.org/abs/2304.08466

https://arxiv.org/abs/2312.17742
https://arxiv.org/abs/2304.08466
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… but “self-consuming generative models go MAD”!!

Sina Alemohammad et al.

https://arxiv.org/abs/2307.01850
StyleGAN-2 re-trained from synthetic images sampled from 

the previous generation model.

https://arxiv.org/abs/2307.01850
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How to stop the MADness?

Mix in “sufficient” portion of real data during each generation. 
(Alemohammad et al.; Bertrand et al.)

https://www.cartoonstock.com/cartoon
?searchID=CS116071&type=storeCan we somehow (auto-)correct the synthesized examples?
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We use auto-correct every day…

Welleck and Lu et al., https://arxiv.org/abs/2211.00053

For video generation, can 
we rely on the law of 
physics for correction?
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Why self-correct? Our theoretical results…
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Why self-correct? Our theoretical results…

Self-Correcting Self-Consuming Loops for Generative Model Training

ciently close to the optimal model parameters ✓?, and if
the augmentation percentage � is sufficiently small, then
under iterative fine-tuning with correction, we can expect
our subsequent model parameters to stay close to ✓?.

Theorem 4.3 (Stability of Iterative Fine-Tuning with Cor-
rection). Fix an augmentation percentage � 2 R>0 and a
correction strength � 2 R�0. Suppose we have an iterative
fine-tuning procedure defined by the rule ✓nt+1 = ⇡�G

n
� (✓

n
t ),

and suppose that Assumption 4.2 holds. Define the constant

⇢(�) := ⇢(�;↵, ", L) :=
�(↵+ "L)

↵� �(↵+ "L)

and fix any � 2 (0, 1). If ✓0 is sufficiently close to ✓?, and if
�
�
1 +

"L
↵

�
< 1+�

2+� , then ⇢(�)/(1 + �) < 1, and it follows
that the stability estimate holds with probability 1� �:

k✓nt � ✓?k (7)

 ⌧n(�/t)
tX
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✓
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1 + �
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+

✓
⇢(�)

1 + �

◆t

k✓n0 � ✓?k

for all t > 0.

We prove Theorem 4.3 in Appendix A.
Remark 4.4. If we apply Theorem 4.3 with correction
strength � = 0, then the iterative fine-tuning procedure
trains successively on a combination of raw synthetic data
that has not been corrected using a correction function and
ground truth data. This is exactly the case considered in
(Bertrand et al., 2024). Accordingly, the bound in (7), ap-
plied with � = 0, exactly recovers their result.

Corollary 4.5. Under the assumptions from Theorem 4.3,
iterative fine-tuning with any amount of correction outper-
forms iterative fine-tuning without correction–in the sense
that it is exponentially more stable, and it results in better
model weights.

Proof of Corollary 4.5. We apply Theorem 4.3 with � = 0,
which corresponds to no correction, as well as with � > 0,
which corresponds to any amount of correction. For any
� > 0, we notice that the RHS of (7) is strictly smaller than
when � = 0. This guarantees better stability as t ! 1, as
well as model weights ✓nt closer to ✓?.

Example 4.6. If we apply Theorem 4.3 with correction
strength � ! 1, then the bound (7) in Theorem 4.3 limits
to ⌧n(�/t). This implies that the practical iterate ✓nt ap-
proaches the ideal model paramaters, and is at worst some
constant away, that depends on error from the optimization
procedure, as well as statistical error from using finitely
many ground truth data samples n.

Note that Theorem 4.3 relies on the assumption that the
initial model parameters ✓0 are sufficiently close to the ideal

model parameters ✓?, and also that the augmentation per-
centage � is sufficiently small. We hypothesize that these
assumptions can be relaxed in the case where a correction
function participates in the iterative fine-tuning procedure–
intuitively, the correction function should compensate for
errors that arise from ✓n0 being worse, as well as errors that
arise from incorporating more synthetic data. We frame this
in the following conjecture.
Conjecture 4.7. In the case of iterative fine-tuning with
correction, we may relax how close the initial model param-
eters ✓n0 need to be to the optimal model parameters ✓?, as
well as choose a larger synthetic augmentation percentage
�, while still retaining the improved stability estimate (7).

We provide empirical evidence for Conjecture 4.7 in Sec-
tion 7 on the human motion synthesis task. In fact, Theo-
rem 4.3 represents partial progress towards this conjecture.
Namely, according to Theorem 4.3, for large correction
strength �, we can effectively choose a synthetic augmenta-
tion percentage that is twice as large as we would be able to
without any correction, and still be able to meet the assump-
tions of the theorem. This is because lim�!1

1+�
2+� = 1,

which is twice as large as the bound when � = 0.

5. Toy Example: Gaussian
We first assume oracle knowledge of the ground truth distri-
bution, and use a toy example to directly demonstrate the
impact of the correction strength � on model performance
and stability as stated in Theorem 4.3 and Corollary 4.5.
Our ground truth distribution is a 2-dimensional isotropic
Gaussian centered at the origin, i.e., ✓? = ((0, 0), I2), and
our correction is “distribution-wise” in this idealized sce-
nario. We consider the more practical setting, where we
don’t have oracle knowledge of the target distribution a pri-
ori, and where the data correction is “point-wise”, in the
empirical studies in the following two sections. Further,
in Appendix C, we show that, in theory, sufficiently well-
behaved pointwise correction functions indeed correspond
to distribution-wise correction functions.

Concretely, our ground truth dataset contains 50 points sam-
pled from the target distribution, which are used to estimate
✓500 = (µ0,⌃0) 2 R6. We fix our synthetic augmentation
percentage to be � = 0.5, and inductively synthesize a new
dataset Dsynth = {yi ⇠ N (µt,⌃t)}

25
i=1. We implement

a correction function to map Dsynth, which was sampled
from p✓50

t
, to a dataset Dcorrected, which is likelier to have

been sampled from the target density p✓? . We do this by
sampling Dcorrected from the middle density corresponding
to a given correction strength �:

⇡� p̂✓50
t
(x) :=

p̂✓50
t
(x) + �p✓?(x)

1 + �
, (8)

where p̂✓50
t

is the empirical PDF obtained from Dsynth.
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We start from human motion synthesis
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We start from human motion synthesis
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How? fixing motions using a physics simulator in “self-
correcting self-consuming loop”
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Self-correcting self-consuming does not go MAD

Self-Correcting Self-Consuming Loops for Generative Model Training

Figure 4. Results from our human motion experiments on iterative fine-tuning with self-correction. These graphs show evaluation metrics
for the last checkpoint for every generation. This is the checkpoint used for sampling in the iterative fine-tuning experiments, and it is also
the checkpoint where training is resumed with this new partially synthesized dataset. We can see that with self-correction, the iterative
fine-tuning procedure more stably converges to a better FID score, and more quickly. When the dataset size is smaller (n = 64, above)
we can see that iterative fine-tuning with no self-correction has a flat Matching score, as well as diverging FID and Diversity scores,
indicating model collapse. And when the dataset size is larger (n = 2794, below), there is less collapse for iterative fine-tuning with
no self-correction, although the variance of the FID score is worse, as is the average FID across generations. In both cases, we see that
iterative fine-tuning with self-correction outperforms iterative fine-tuning with no self-correction, and is competitive with the baseline
after many generations.

dataset size 64 ⇤ k, and the number of batches seen for each
later generation t > 0 to be m = 16. We choose to control
how many data points the model sees across each generation,
rather than controlling some other quantity like the num-
ber of epochs, as this allows each experiment to compare
against its baseline in a controlled way, which in turn allows
them to compare against each other in a controlled way.

We compute every evaluation one time for each checkpoint
using the evaluation script provided in the original MDM
codebase. Regardless of the train split size, we perform sam-
pling for evaluation using all 546 motion sequences from
the test split, since the FID score is sensitive to generated
dataset size. We use the same hyperparameters as those used
for MDM, including batch size 64, AdamW (Loshchilov
& Hutter, 2019) with learning rate 1e � 4, and classifier-
free guidance parameter 2.5. And for UHC we used the
uhc explicit model for imitation.
7.4. Quantitative Analysis of Results

For each of these experiments we report the metrics from
MDM, as used by (Guo et al., 2022): FID measures how
similar the distribution of generated motions is to the ground
truth distribution; Diversity measures the variance of the
generated motions; and Matching Score measure how well
the generated motions embody the given text prompt. In
Figure 4 we present results from experiments on our 64-size

dataset with 100% synthetic augmentation, as well as our
2794-size dataset with 25% synthetic augmentation.

Our experimental results confirm our theoretical results, that
iterative fine-tuning with self-correction outperforms iter-
ative fine-tuning without self-correction, in the sense that
the graphs are generally more stable across generations, and
approach better evaluation metric values. In particular, The-
orem 4.3 and Corollary 4.5 claim that any amount of ideal-
ized self-correction will improve the stability bound during
iterative fine-tuning. Our results in Figure 4 demonstrate
that the FID score is lower and more stable across genera-
tions when applying self-correction, and generally higher
and less stable than the baseline, where there is no self-
consuming training at all. We conduct experiments across
multiple seeds, and we find empirically that this general
phenomenon holds consistently, where the self-correction
technique consistently yields improved training dynamics
over iterative fine-tuning with no correction. Graphs from
these runs can be found in Appendix G.

Our experimental results also provide empirical evidence
for Conjecture 4.7. Observe that in the baseline experiments
in Figure 4, the FID score decreases across generations,
which indicates that the initial model parameters ✓n0 are not
that close to the optimal model parameters ✓?; addition-
ally, the augmentation percentages considered in the graph

8

Correction function:
Tweak the generated joints 
so they can be executed by a 
simulated human
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Zooming into the physics correction function

Universal Humanoid Control, Luo et al (2021)
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Zooming into the physics correction function
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Follow-up questions

1. Self-consuming 
generative modeling

How to stabilize self-consuming 
generative models for other 
modalities (e.g. text, image)?
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Follow-up questions

2. “Vanilla” generative 
modeling

How to make 
general-purpose video 
generative models better 
understand physics?

OpenAI’s Sora 

https://www.youtube.com/watch?v=lfbImB0_rKY&ab_channel=Newsshooter

https://www.youtube.com/watch?v=lfbImB0_rKY&ab_channel=Newsshooter
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