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Graph Transformers vs. GCNs

. . . conv X 3
* Long-distance, dynamic interaction / . —— \
* Not limited to neighbors 0//!

« Attention weights are determined by the network

 Limitations of hand-crafted encodings/features \1

» Positional-encoding based GTs (e.g., Graphormer) (a) Convolution
» Structural understanding = as good as the used positional encoding

. , head 3
« Geometric GTs (e.g., Equiformer) > 6\/
- Geometric understanding ~ as good as the used geometric features \0 } — 3 — .

« Goal: let the network form its own geometry / O

structure %Cx |
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Graph Structure and Pair Representations

 Pairs = directed existing/non-existing edges
. e.g., 3-4, 43,31, 1-3

* For graphs pair representations (e;;) can be as
Important as node representatlons (h;)
» Allow the structure of the graph to evolve over layers

» Refine structure/topology internally in case of
inaccuracies

» Directly perform pair related task
 Link prediction
« Edge classification
 Distance Prediction

« EGT (Edge-augmented Graph Transformer)
« Make pairs (2-tuple) first class citizen, just like nodes

» Break free of the input graph topology
» Limitation: only 2nd-order interaction
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3D Molecular Geometry

« 2D

e Bonds + Atoms (i.e., chemical formula)

* 3D O~_ _OH

« Coordinates N
« Ofteninteratomic distances is enough 0
* 3D shape directly dictates molecular V >>
property 0

* But costly to compute (QM simulation
required)

 Train a model: 2D—-3D 2D

* i.e., predict the molecular geometry
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K-order interaction vs. K-order features

« 2" Order (i, j): Pairwise distances

« 4th Order (i, j, k, ¢): Dihedral angles, volume of
tetrahedrons, etc.

«»
«»
«»
«»
) P
S
«

We need either higher order interactions or higher order
features for full geometric understanding

» Crucial for 3D geometry prediction

e Our contribution: Third order interaction
« Pairs (i,j), (j, k), (i, k) within the 3-tuple (i, }, k)
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Why higher order interactions?

« Using higher order features such as angles implies
* Aninitial estimate of geometry is required
» Features are only as accurate as the estimate
» Specialized for geometric graphs only

« Using higher order interactions implies
* No estimate of geometry is required, a simple graph is enough
* The network can form representations that are more refined than the initial estimate
» Applicable to both geometric and non-geometric graphs

* Our work improves geometric expressivity without losing generality

. g\[e blieak free from the inaccuracies of the initial geometry (when
iven
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Our Contribution

Triplet Graph Transformer
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Triplet Interaction within a 3-tuple (i, j, k)

« Participants (inward): (i,/), (j, k), (i, k) k k
* (i,j) gathers information from (j, k) (k))‘ ' ,
- Without triplet interaction Tﬂ /
* Gok) = Jj = (0.)) - (f'i ]
« Bottleneck at node j k/.,“(‘;)“l‘nward
« With triplet interaction k "
© G5 )) VAN
* (i, k) also participates in this process * Tﬁ
+ Similarly: outward update i &) N
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* Two mechanisms
. Triplet Attention (TGT-At)

1 in in in in

q;j - Py + bi) < o(gir)

Z a’Z]ijk ’ %Jk = softma(
- More expressive, O(N?)

* Triplet Aggregation (TGT-Ag)
N
off = alivii;  all = softmaxi(}) x o(g})

k=1
» More efficient, O(N%37)

Tr@n
(i,]
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Network Architecture

. —» Projection

« EGT (our previous work) Pt | = Connection| ¢!

 Node representations — Node channels A

« Pair representations - Edge channels €+5N( - FIFX;IWS

o nd i : | ode

| Only.2 order. Interactions | ;
* Triplet interaction (TGT) j _ _

« Update pair representations based on each other | Triplet I“iemc“‘m :

« 31 order interactions < >® |
- Pair embeddings are directly used for ; EGT Attention |

predicting (binned) pairwise atomic distances 2y t——

» Useful for other geometric tasks as well (e.g., h; e;

Traveling Salesman Problem) Node Channels Edge Channels
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Training
and
Inference

St age 2 Target
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 Locally smoothed 3D noise for pretraining the task predictor

Other Contributions

N
gl
r.=r; + E e 7 uj; where u; ~ N (0, 0°I)
p

« Source dropout: Stronger regularization for graph transformers
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Key Contributions
 Triplet Graph Transformer (TGT)

* Novel triplet interaction mechanismes for direct pair-to-pair communication
» Accurately models geometry in graphs

« Two-stage model
» Separate distance and task predictors
» Eliminates need for initial 3D coordinates

« Three-stage training procedure and stochastic inference
» Significantly improves training efficiency and predictive performance

« TGT for graph learning

 Traveling Salesman Problem
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Quantum Chemistry (Large-scale)

 Predict in absence of ground truth 3D

(a) PCQMAMvV2 (Molecules) (b) OC20 IS2RE (Crystals)
Model MAE! (meV) MAE! EwTT
EGT 86.2 Model (meV) (%)
Transformer-M 78.2 SphereNet 618.8 3.32
Uni-Mol+ (+RDKit) 70.5 EquiFormer 466 5.66
TGT-At 69.8 Uni-Mol+  414.3 8.23
TGT-At (+RDKit) 68.3 TGT-At 414.7 8.3

(&

r‘ !‘
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Quantum Chemistry (Transfer Learning)

* Ground truth 3D is provided
* Fine-tuned from PCOM4Mvy2

(a) QM9 (Molecules)

Method u a ey €. Ae ZPVE C,

3D Infomax 0.034 0.075 29.8 25.7 48.8 1.67 0.033
SphereNet 0.025 0.053 22.8 189 31.1 1.12 0.024
Equiformer 0.011 0.046 15 14 30 1.26 0.023

Transformer-M  0.037 0.041 175 16.2 27.4 1.18 0.022
TGT-Ag 0.025 0.040 99 9.7 174 1.18 0.020
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Molecular Property (Transfer Learning)

* Non-quantum property prediction and drug discovery

« Use frozen (not finetuned) distance predictor from PCQM4Mv?2
* Provides more accurate 3D information than RDKIT

MOLPCBA (Property) LITPCBA (Drugs)

Model APT (%) Model ROC-AUCT (%)

PHC-GNN 29.47 GEM 78.4

Graphormer 31.40 GEM-2+RDKit 81.5

TGT-Ag+RDKit 31.44 EGT+RDKit 81.2 E
TGT-Ag+DP 31.67 EGT+DP 81.5

| |
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Traveling Salesman Problem(Graph Learning)

* Points on a 2D plane
« Edge classification

TSP
Model F1T (%)
GatedGCN 83.8 E
ARGNP 85.5
EGT 85.3
TGT-Agx4 87.1

« Demonstrate the generality of our model
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Merits of Stochastic Inference

* Outperforms deterministic inference with only ~4 samples
» Higher confidence implies higher accuracy
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Future Work

* Explore use of triplet interaction for other graph learning tasks
* Molecule and conformation generation
* Link prediction
« Combinatorial Problem
 Self-supervised/semi-supervised/generative graph learning

« Improve compute and memory efficiency of triplet interaction
* Sparsity
 Linearity L
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Thank You

Please check out our paper for more details.
Paper: https://arxiv.org/abs/2402.04538

Implementation: https://github.com/shamim-hussain/tgt



https://arxiv.org/abs/2402.04538
https://github.com/shamim-hussain/tgt
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