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e A common issue for learning from offline observational data is the existence of

spurious correlations: which are relationships between variables that appear to
be causal, but in fact are not.

e For example:

Airplane ticket price Airplane ticket sales
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o The causal structural model for the outcome R is specified as follows:

R:=f.(C,A)+¢ Ele =0, ElAC]+#D0,

It has been shown (Bareinboim & Pearl, 2012) that we cannot learn

A: action . - !

R: outcome the causal effect of actions in the presence of hidden confounders
' without structural assumptions

C: context

\ 4

Airplane ticket price Airplane ticket sales
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,/Q\\ IVs are random variables independent to the hidden confounder
e N and only directly affect the action.

How to choose a good instrument 7?

%

f
_ : Minimal conditions to identify the causal effect:
A: action
R: outcome Axiom (A) The unconfounded instrument restriction, Z 1L € | C, i.e., the
C: context instrument Z is independent of the hidden confounder € conditional on C.

7- Inst ; Axiom (B) The relevance condition, P(A|C, Z) is not constant in Z, i.e., it
- Instrumen ensures that Z induces variations in action.

Supply side costs
e.g., jet fuel price

v
\ 4

Airplane ticket sales

Airplane ticket price
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Other examples: Family Background
i____E_e_'nsg_r?_rzh‘f_s_____e\

\ 4

\ 4

Education

Affects theage ,
when children first

get education

Birth Month Earning

geographical distance
from a medical facility

Health outcomes

\ 4

Treatments

\ 4

People less willing to How to choose a good instrument Z?
receive treatment due to
the distance

Minimal conditions to identify the causal effect:

Axiom (A) The unconfounded instrument restriction, Z 1L € | C, i.e., the
instrument Z is independent of the hidden confounder e conditional on C.

Axiom (B) The relevance condition, P(A|C, Z) is not constant in Z, i.e., it
ensures that Z induces variations in action.
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Contextual Instrumental Variable (V)

:

A: action
R: outcome
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R:=f.(C,A)+¢, El¢=0, E[AC]+#0,

Our goal is to learn the counterfactual prediction function:

ho(C, A) := fr(C, A) + E[¢e|C] = E[R|do(A), C],

C: context

Why learn the counterfactual prediction function /,?

Z: Instrument

. Learning hg allows us to compare between different actions when given a

. Forany policy 7 : C — A(A), let V() := Eceup, [ho(c, 7(c))] denote the value

context C' as ho(C, a1) — ho(C, az) = f(C,a1) — f.(C,az) for all aj,as € A, and
in particular, arg max,¢ 4 ho(C, a) = argmax, 4 f(C, a).

function of m, where Pt Mmay differ from Piaim. The optimal policy can be
retrieved by 7(a) = arg max,¢ 4 ho(c, a).
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R = f.(C,A)+¢
We can identify h, using: This is an inverse problem for definite integrals that
RO 2T IE[f (C, A) + ]E[e|C]‘C' Z] requires the derivation of a function inside the
[T Sl g Bl . T ’ ?

definite integral based on numerical integral values,

= E[ho(C, A)|C, Z] thus can’t be solve analytically.

— / ho(C, Aﬁp-(-fﬂ-éa-z-yﬂA’

Existing two-stage IV regression methods:

. E[h(C, A)lc, 2]
Both observable First stage learns

min E[(R — E[h(C, A)|C, Z])?].
Second stage learns "€#

Recent non-linear IV regression methods use ML
estimators for both stages.
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However, both regularisation and overfitting cause heavy bias (Chernozhukov et al., 2018) in estimating h,
when the first stage estimator is naively plugged in, which causes slow convergence of the causal function

estimator.

Double Machine Learning (DML)[3! is a statistical technique that debiases two-stage estimators and
provides fast convergence rate guarantees for general two-stage regressions.

DML considers the problem of estimating a function of interest h as a solution to an equation (or score) of
the form E[¢(D; h,n)] = 0, where n are nuisances parameters. Crucially, DML requires the score Y to be
Neyman orthogonal®, which requires the Gateaux derivative to be zero:

5 Intuition: small changes of the

_ ]E[¢(D; hO, No + 7'77)] — 0’ nuisance parameter do not

or lr=0 significantly affect the score function
around the true parameter h,
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We first need to find a Neyman orthogonal score function for the IV regression problem
E[(D; h,n)] =0

Neyman Orthogonal Score

We let go(h,c, z) = E[h(C, A)|c, z]. The standard score (or loss) for two-stage IV
regression £ = (R — g(h, ¢, z))? is not Neyman orthogonal. We found that by addi-
tionally estimating so(c, z) = E[R|c, 2|, we can derive an orthogonal score.

Theorem 1. The score function (D; h, (s, g)) = (s(c, 2)—g(h, c, z))? obeys the Neyman
orthogonality conditions at (hg, (o, 9o))-

This score is abstract and it allows for general estimators s and g, for example,
neural networks or random forests.
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Learning Causal Effects through DML

s(c, z) = [R|C, Z] can be learnt through standard supervised learning using a neural network with inputs (C, Z) and label R.
To estimate g(h, c, z), we first estimate Fy(A|C, Z), the conditional distribution of A given (C, Z), with F and then plug in,

g(h,cz)= > h(C,a) = E[h(C,A)lc, 2.
a~F(A|C,Z)

Lastly, we plug in s, g into 1, to estimate the counterfactual prediction function h.

K-fold cross fitting

Y

V

For each fold of data
that is used to fit h

The rest of the data is used to train the
nuisances parameters: sand g
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For each fold we use data from I = [N] \ I tolearn 8x ~ E[R|C, Z] via supervised learning

For gi, we follow (Hartford et al., 2017) to estimate
Fy(A|C, Z), the conditional distribution of A given (C, Z),
with F', and then estimate g via

2.

A~F(A|C,Z)

~ / h(C, A)F(A|C, Z)dA ~ E[h(C, A)|c, 2.

g(h,c,2) = h(C, A)

Algorithm 1 DML-IV with K-fold cross-fitting

Input: Dataset D of size N, number of folds K for cross-fitting, mini-batch size ny
Output: The DML-IV estimator h;
Get a partition (I)X , of dataset indices [N]
fork=1to K do
I = [N]\ I
Learn i, and g, using {(D;) : i € If}
end for
Initialise hj
repeat
fork=1to K do
Sample ny, data (cf, 2f) from {(D;) : i € It}
L =E . [(Bk(c, 2) — Gr(ho, ¢, 2))]
Update f to minimise loss £
end for
until convergence
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DML-IV

We sample mini-batch (c¥, z¥) from Dy,
and optimize the following loss:

B or o0y [(8k(c, 2) — Gi(he, ¢, 2))°]
= 3 L (ke 2) — dr(ho ¢, 2))2)

n
(ck,2k) P
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Algorithm 1 DML-IV with K-fold cross-fitting

Input: Dataset D of size N, number of folds K for cross-fitting, mini-batch size ny
Output: The DML-IV estimator h;
Get a partition (I)X , of dataset indices [N]
fork=1to K do
I = [N]\ I
Learn i, and g, using {(D;) : i € If}
end for
Initialise hj
repeat
fork=1to K do
Sample ny, data (cf, 2f) from {(D;) : i € It}
L =E . [(Bk(c, 2) — Gr(ho, ¢, 2))]
Update f to minimise loss £
end for
until convergence
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i —~1/2
In order to achieve the O(N / ) convergence The critical radius is a quantity that describes the com-
rate guarantee, apart from having a Neyman plexity of estimation, and it is typically shown that iy =

orthogonal score and using k-fold cross fitting, O(dvN —1/2) (Chernozhukov et al., 2022b; 2021), where

o . dy is the effective dimension of the hypothesis space
we additionally need that the nuisances (see Appendix C.3 for the derivation and formal defi-
parameter converges at o(N~1/4) nitions). This, together with Lemma 3.3, implies that
15 — so|l2 = O(dy N~1/2). Therefore, for function classes
Assumption 3.2. We assume that (a): go, so, ho € G,S,H with dy = o(N1/4), ||3 — so||2 < o(N—/4) (and similarly

are all bounded i.e., [|go|o, [[Solloo: [|A0llec < B; and (b): [or §). This is a broad class of functions that covers ‘many
the outcome || R||oc < B, where B € Rt.

.machlne learning methods such as deep ReLU networks andl

Lemma 3.3 (Informal: nuisance parameters convergence?). .shallow regression trees (Chernozhukov et al., 2021). It has:
If Assumption 3.2 holds, let 5 be an upper bound on the .also been shown that conditional density and expectatlon:
critical radius of the function spaces related to the realisa- |est1mat10n used for § satisfies dy = 0( N/ 4) under mild as-:
tion sets Sy and Gn. Then, with probability 1 — (: |sumpt10ns (Griinewilder, 2018; Bilodeau et al., 2021). We!
|refer to Chernozhukov et al. (2021) for additional d1scuss1onl
R 2 2 In(1/¢) ) d f I
|8 —sollz =0 ( 0n + N ; |_a£1_ concrete convergence rates of nuisance gs_tl_rr_la_tgr_s____.
. In(1/¢
lo - gl =0 (3 + “/2)).
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Analysis of DML-IV Convergence

| \/_(h ho) — N(0,07%) in dlstr/buhon, !

where the estimator variance is given by

02 = ']O_IIE[w(D’ h07 UO)¢(D7 h07 nO)T](']O_l)T7
which is constant w.r.t N and J, denotes the Jacobian matrix of (1] w.r.t hy.

Analysis of the Induced Policy

Theorem 2 (Suboptimality Bounds). Let the learnt policy from a dataset of size N be 7t(c) = arg ma,xaﬁ(c, a). Let L be the Lipschitz
constant of hy parameterized by 6 € ©. Then, for all ¢ € (0, 1], with probability 1 — (.

isubopt(ﬁ):O<L In(1/¢ )>§

N

This result matches the suboptimality bounds of the unconfounded bandit and it is minimax optimal.
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* We consider datasets with both low- and high-dimensional contexts, as well as semi-synthetic
real-world datasets.

* We evaluate DML-IV, and a computationally efficient version of DML-IV, referred to as CE-DML-1V,
which does not apply K-fold cross-fitting. In CE-DML-IV, nuisances parameter estimators are
trained only once (instead of K times) using the entire dataset. It can also be considered as an
ablation study for K-fold cross-fitting.

* Note that CE-DML-1V lacks the theoretical convergence rate guarantees but it still enjoys the
partial debiasing effect from the Neyman orthogonal score and trades off computational
complexity with bias. We found that CE-DML-IV empirically performs as well as standard DML-IV
on low-dimensional datasets.

Bill Shao




DEPARTMENT OF

COMPUTER

: SCIENCE
Experiments T

UNIVERSITY OF

0),430)23D
E 0.5
Synthetic airplane ticket sales % 0.0
dataset, where the causal g_o_S

function is a complex non- 1
linear function.
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Standard offline bandit algorithms that don’t explicitly
consider Vs failed to learn meaningful policies when the data
is confounded.

(On airplane ticket sales dataset)
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Mean Squared Error (log scale)

Experiments

Synthetic airplane ticket sales
dataset, where we replace the
customer type variable € [1..7]
(a context variable) with MNIST
images of the same digits.
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Real-world datasets:

The true counterfactual prediction function is rarely available for real-world data. Therefore, in line

with previous approaches, we instead consider two semi-synthetic real-world datasets: Infant Health
and Development Program (IHDP) dataset and the PM-CMR (impact of PM2.5 particle level on the
cardiovascular mortality rate), where only the outcome is generated synthetically.
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0.1 %iil 15 DML-IV
0.05
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Dataset IHDP PM-CMR

Dataset
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* We have proposed a novel method for instrumental variable regression, DML-IV. By leveraging IVs
and DML on offline data

 DML-IV can learn counterfactual predictions and effective decision policies with fast convergence
rate and suboptimality guarantees by mitigating the regularisation and overfitting biases of DL

e Superior performance against SOTA IV-regression methods

 DML-IV is practical and can be used to solve real-world problems if IVs are available!
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